2024-2025学年湖南省长沙市数学九上开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )
A.6B.7C.2D.2
2、(4分)从、、、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程有解,且使关于x的一次函数不经过第四象限.那么这六个数中,所有满足条件的k的个数是( )
A.4B.3C.2D.1
3、(4分)把分式中、的值都扩大为原来的2倍,分式的值( )
A.缩小为原来的一半B.扩大为原来的2倍
C.扩大为原来的4倍D.不变
4、(4分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于( )
A.cmB.2cmC.3cmD.4cm
5、(4分)如图,直线y=-x+2与x轴交于点A,则点A的坐标是( )
A.(2,0)B.(0,2)C.(1,1)D.(2,2)
6、(4分)下列调查中,最适合采用全面调查(普查)方式的是( )
A.对无锡市空气质量情况的调查B.对某校七年级()班学生视力情况的调查
C.对某批次手机屏使用寿命的调查D.对全国中学生每天体育锻炼所用时间的调查
7、(4分)对于一次函数y=﹣2x+4,下列结论错误的是( )
A.函数的图象不经过第三象限
B.函数的图象与x轴的交点坐标是(2,0)
C.函数的图象向下平移4个单位长度得y=﹣2x的图象
D.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2
8、(4分)如图,函数与,在同一坐标系中的大致图像是()
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.
10、(4分)如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.
11、(4分)如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.
12、(4分)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是 .
13、(4分)使在实数范围有意义,则x的取值范围是_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知AD∥BC,AB⊥BC,AB=BC=4,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D
(1)如图1,当P为AB的中点时,求出AD的长
(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°
(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.设QG=x,QH=y,直接写出y关于x的函数解析式
15、(8分)A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡,从A城运往C、D两乡运肥料的费用分别是每吨20元和25元,从B城运往C、D两乡运肥料的费用分别为每吨15元和24元,现在C乡需要肥料240吨,D乡需要肥料260吨,设A城运往C乡的肥料量为x吨,总运费为y元.
(1)写出总运费y元关于x的之间的关系式;
(2)当总费用为10200元,求从A、B城分别调运C、D两乡各多少吨?
(3)怎样调运化肥,可使总运费最少?最少运费是多少?
16、(8分)如图,于点,于点,与相交于点,连接线段,恰好平分.
求证:.
17、(10分)如图,在直角坐标系中,点为坐标原点,点,分别在轴,轴的正半轴上,矩形的边,,反比例函数的图象经过边的中点.
(1)求该反比例函数的表达式;
(2)求的面积.
18、(10分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.
(1)若∠F=62°,求∠D的度数;
(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.
20、(4分)一次函数y=(2m﹣6)x+4中,y随x的增大而减小,则m的取值范围是_____.
21、(4分)如果一组数据:8,7,5,x,9,4的平均数为6,那么x的值是_____.
22、(4分)若二次根式有意义,则x的取值范围为__________.
23、(4分)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)给出三个多项式:,请选择两个多项式进行加法运算,并把结果分解因式(写出两种情况).
25、(10分)图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,且点A,B均在格点上.
(1)在图①中以AB为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;
(2)在图②中以AB为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;
(3)图①中所画的矩形的面积为 ;图②中所画的菱形的周长为 .
26、(12分)如图,在四边形ABCD中,AD⊥BD,BC=4,CD=3,AB=13,AD=12,求证:∠C=90°.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据题意画出图形,利用勾股定理解答即可.
【详解】
如图,
设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:
,
两式相加得:a2+b2=31,
根据勾股定理得到斜边==1.
故选A.
本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.
2、C
【解析】
根据题意可以求得k的值,从而可以解答本题.
【详解】
解:∵关于x的一次函数y=(k+2)x+1不经过第四象限,
∴k+2>0,解得:k>,
∵关于x的分式方程:有解,
∴当k=-1时,分式方程=k-2的解是,
当k=1时,分式方程=k-2无解,
当k=2时,分式方程=k-2无解,
当k=3时,分式方程=k-2的解是x=1,
∴符合要求的k的值为-1和3,
∴所有满足条件的k的个数是2个,
故选:C.
本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出相应的k的值.
3、D
【解析】
根据分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变,可得答案.
【详解】
把分式中的x和y的值都扩大到原来的2倍,得
故选D.
本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.
4、C
【解析】
根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.
【详解】
∵ED⊥AB,∠A=30°,∴AE=2ED.
∵AE=6cm,∴ED=3cm.
∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.
故选C.
本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.
5、A
【解析】
一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.令y=0,即可得到图象与x轴的交点.
【详解】
解:直线中,令.则.
解得.
∴.
故选:A.
本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b(k≠0,且k,b为常数)与x轴的交点坐标是(−,0),与y轴的交点坐标是(0,b).
6、B
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A. 对无锡市空气质量情况的调查用抽样调查,错误;
B、对某校七年级()班学生视力情况的调查用全面调查,正确;
C、对某批次手机屏使用寿命的调查用抽样调查,错误;
D、对全国中学生每天体育锻炼所用时间的调查用抽样调查,错误;
故选B.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、D
【解析】
根据一次函数的性质和一次函数图象上点的坐标特征以及一次函数的几何变换进行判断.
【详解】
解:A、k=﹣2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,不符合题意;
B、函数的图象与x轴的交点坐标是(2,0),不符合题意;
C、函数的图象向下平移4个单位长度得y=﹣2x的图象,不符合题意;
D、若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y2<y1,符合题意;
故选D.
本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.
8、B
【解析】
分成a>0和a<0两种情况进行讨论,根据一次函数与反比例函数的图象的性质即可作出判断.
【详解】
解:当a>0时,一次函数单增,过一三四象限,没有选项满足.
当a<0时,一次函数单减,过二三四象限,反比例函数过二四象限,B满足.
故答案选B.
本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、110°
【解析】
已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.
10、2
【解析】
分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.
详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,
∵△AOP为等腰直角三角形,
∴OA=OP,∠AOP=90°,
易得四边形OECF为矩形,
∴∠EOF=90°,CE=CF,
∴∠AOE=∠POF,
∴△OAE≌△OPF,
∴AE=PF,OE=OF,
∴CO平分∠ACP,
∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,
∵AE=PF,
即AC-CE=CF-CP,
而CE=CF,
∴CE=(AC+CP),
∴OC=CE=(AC+CP),
当AC=2,CP=CD=1时,OC=×(2+1)=,
当AC=2,CP=CB=5时,OC=×(2+5)=,
∴当P从点D出发运动至点B停止时,点O的运动路径长=-=2.
故答案为2.
点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.
11、1
【解析】
试题解析:∵菱形ABCD的对角线AC=6,BD=8,
∴菱形的面积S=AC•BD=×8×6=1.
考点:菱形的性质.
12、1.
【解析】
试题分析:因为菱形的对角线垂直平分,对角线AC,BD的长分别是6和8,
所以一半长是3和4,
所以菱形的边长是5,
所以周长是5×4=1.
故答案为:1.
考点:菱形的性质.
13、x≥
【解析】
根据:对于式子,a≥0,式子才有意义.
【详解】
若在实数范围内有意义,则3x-1≥0,解得x≥.
故答案为x≥
本题考核知识点:二次根式的意义. 解题关键点:理解二次根式的意义.
三、解答题(本大题共5个小题,共48分)
14、(1)1;(2)见解析;(3)
【解析】
(1)如图1.根据平行线的性质得到∠A=∠B=90°,由折叠的性质得到∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,根据全等三角形的性质得到∠APD=∠EPD,推出 于是得到结论;
(2)如图2.过C作CG⊥AF交AF的延长线于G,推出四边形ABCG是矩形,得到矩形ABCG是正方形,求得CG=CB,根据折叠的性质得到∠CEP=∠B=90°,BC=CE,∠BCP=∠ECP, 根据全等三角形的性质即可得到结论:
(3)如图3,将△OQG沿OM翻折至△OPG,将△OQH沿ON翻折至△ORH,延长PG, RH交于S,推出四边形PORS是正方形,根据勾股定理即可得到结论.
【详解】
解:(1)如图1,连结,
∵AD//BC. AB⊥BC,
∴∠A=∠B=90°
∵将△BPC沿PC翻折至△EPC,
∴∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,
∴∠DEP=90°
∵当P为AB的中点,
∴AP=BP
∴PA=PE
∵PD=PD
∴,
∴
作于,设,则,
由勾股定理得,
解得,
∴
图1
(2)如图2,作交延长线于,易证四边形为正方形
∵∠A=∠B=∠G=90°,
∴四边形ABCG是矩形,
∵AB=BC,
∴矩形ABCG是正方形,
∴CG=CB.
∵将△BPC沿PC翻折至△EPC,
∴∠ FED=90°,CG=CE,
又∵CF=CF
∴,
∴∠ECF=∠GCF,
∴∠BCP+∠GCF=∠PCE+∠FCE=45°
∴∠PCF=45°;
图2
(3)如图3.将△OQG沿OM翻折至OOPG.将△OQH沿ON翻折至△ORH.延长PG, RH交于S,则∠POG=∠QOG.∠ROH=∠QOH, OP=OQ=OR=8,PG=QG=x,QH=RH=y,
∴ ∠POR=2∠MON=90",
∵GH⊥OQ.
∴∠OQG=∠OQH=90° .
∴∠P=∠R=90° ,
∴四边形PORS是正方形。
∴PS=RS=8,∠S=90°,
∴.GS=8-x,HS=8-y.
∴ .
∴
∴
图3
本题考查了折叠的性质,全等三角形的判定和性质,正方形的判定和性质,正确的作出辅助线是解题的关键.
15、(1)y=4x+10040(0≤x≤200);(2)从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
【解析】
(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和(60+x)吨,然后根据总运费和运输量的关系列出方程式,就可以求出解析式;
(2)将y=10200代入(1)中的函数关系式可求得x的值;
(3)根据(1)的解析式,由一次函数的性质就可以求出结论.
【详解】
(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和[260-(200-x)]=(60+x)吨.由总运费与各运输量的关系可知,反映y与x之间的函数关系为
y=20x+25(200-x)+15(240-x)+24(60+x)
化简,得y=4x+10040(0≤x≤200)
(2)将y=10200代入得:4x+10040=10200,解得:x=40,
∴200-x=200-40=160,240-x=200,60+x=100,
∴从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.
(3)∵y=4x+10040,
∴k=4>0,
∴y随x的增大而增大,
∴当x=0时,y最小=10040
∴从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
本题考查了一次函数的解析式的运用,一次函数的性质的运用.解答时求出一次函数的解析式是关键.
16、见解析.
【解析】
由角平分线的性质得出OE=OD,证得△BOE≌△COD,即可得出结论.
【详解】
∵于点,于点,恰好平分
∴,
∵
∴
∴
本题考查了角平分线的性质、全等三角形的判定与性质等知识,熟练掌握角平分线的性质、证明三角形全等是解题的关键.
17、(1);(2).
【解析】
(1)根据,求出C点坐标,再根据为的中点,得到D点坐标,再用待定系数法即可求解函数解析式;
(2)先求出E点坐标,利用割补法即可求出的面积.
【详解】
解:(1)∵,,
∴.
∵为的中点,
∴.代入可得,
∴.
(2)将代入得,
∴.
∴矩形.
此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的应用.
18、(1)(2)
【解析】
(1)由四边形ABCD是平行四边形,∠F=62°,易求得∠BAE的度数,又由AB=BE,即可求得∠B的度数,然后由平形四边形的对角相等,即可求得∠D的度数;
(2)根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAF=∠F=62°,
∵AB=BE,
∴∠AEB=∠BAE=62°,
∴∠B=180°-∠BAE-∠AEB=56°,
∵在平行四边形ABCD中,∠D=∠B,
∴∠D=56°.
(2)∵DC∥AB,
∴△CEF∽△BEA.
∵BE=3EC
∴,
∵S△EFC=1.
∴S△ABE=9a,
∵
∴
∴
∴
∵
∴
此题考查了平行四边形的性质与相似三角形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、45°
【解析】
根据正多边形的外角度数等于外角和除以边数可得.
【详解】
∵硬币边缘镌刻的正多边形是正八边形,
∴它的外角的度数等于360÷8=45°.
故答案为45°.
本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.
20、m<3.
【解析】
试题分析:∵一次函数y=(2m-6)x+5中,y随x的增大而减小,
∴2m-6<0,
解得,m<3.
考点:一次函数图象与系数的关系.
21、1
【解析】
利用平均数的定义,列出方程=6即可求解.
【详解】
解:根据题意知=6,
解得:x=1,
故答案为1.
本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.
22、x≤1
【解析】
解:∵二次根式有意义,
∴1-x≥0,
∴x≤1.
故答案为:x≤1.
23、
【解析】
本题有两个相等关系:购买甲种票的人数+购买乙种票的人数=40;购买甲种票的钱数+购买乙种票的钱数=370,再根据上述的等量关系列出方程组即可.
【详解】
解:由购买甲种票的人数+购买乙种票的人数=40,可得方程;由购买甲种票的钱数+购买乙种票的钱数=370,可得,故答案为.
本题考查了二元一次方程组的应用,认真审题、找准蕴含在题目中的等量关系是解决问题的关键,一般来说,设两个未知数,需要寻找两个等量关系.
二、解答题(本大题共3个小题,共30分)
24、答案不唯一,详见解析
【解析】
选择第一个与第二个,第一个与第三个,利用整式的加法运算法则计算,然后再利用提公因式法或平方差公式进行因式分解即可.
【详解】
情形一:
情形二:
此题主要考查了多项式的计算,以及分解因式,关键是正确求出多项式的和,找出公因式.
25、(1)见解析;(2)见解析;(3)8,4.
【解析】
(1)根据矩形的性质画图即可;
(2)根据菱形的性质画图即可;
(3)根据矩形的面积公式和菱形的周长公式即可得到结论.
【详解】
解:(1)如图①所示,矩形ACBD即为所求;
(2)如图②所示,菱形AFBE即为所求;
(3)矩形ACBD的面积=2×4=8;菱形AFBE的周长=4×=4,
故答案为:8,4.
本题考查了作图-应用与设计作图.熟记矩形和菱形的性质以及正方形的性质是解题的关键所在.
26、证明见解析.
【解析】
先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明CD⊥BC.
【详解】
证明:∵AD⊥BD,AB=13,AD=12,
∴BD=1.
又∵BC=4,CD=3,
∴CD2+BC2=BD2.
∴∠C=90°
本题考查了勾股定理及其逆定理,注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省长沙市岳麓区九上数学开学联考模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市岳麓区九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省长沙市雨花区雅礼教育集团九上数学开学复习检测模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市雨花区雅礼教育集团九上数学开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。