|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年海南省儋州市数学九上开学学业质量监测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年海南省儋州市数学九上开学学业质量监测试题【含答案】01
    2024-2025学年海南省儋州市数学九上开学学业质量监测试题【含答案】02
    2024-2025学年海南省儋州市数学九上开学学业质量监测试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年海南省儋州市数学九上开学学业质量监测试题【含答案】

    展开
    这是一份2024-2025学年海南省儋州市数学九上开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知下列图形中的三角形顶点都在正方形网格的格点上,图中的三角形是直角三角形的是( )
    A.B.
    C.D.
    2、(4分)河堤横断面如图所示,斜坡AB的坡度=1:,BC=5米,则AC的长是( )米.
    A.B.5C.15D.
    3、(4分)如图,在Rt△ABC中,∠A=90°,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,若AE=1,则BE的长为( )
    A.2B.C.D.1
    4、(4分)如图,一棵大树在离地面9米高的处断裂,树顶落在距离树底部12米的处(米),则大树断裂之前的高度为( )
    A.9米B.10米C.21米D.24米
    5、(4分)反比例函数y=- 的图象经过点(a,b),(a-1,c),若a<0,则b与c的大小关系是( )
    A.b>c B.b=c C.b<c D.不能确定
    6、(4分)已知一次函数y=kx﹣1,若y随x的增大而减小,则它的图象经过( )
    A.第一、二、三象限B.第一、二、四象限
    C.第一、三、四象限D.第二、三、四象限
    7、(4分)方程的根是( )
    A.B.C.D.,
    8、(4分)要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( )
    A.甲B.乙C.丙D.无法确定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD的面积为_______.
    10、(4分)直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________cm.
    11、(4分)关于一元二次方程的一个根为,则另一个根为__________.
    12、(4分)方程的解为_________.
    13、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE=CF,且S四边形ABFD=20,则k= _________.

    三、解答题(本大题共5个小题,共48分)
    14、(12分)(问题情境)
    如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
    (探究展示)
    (1)直接写出AM、AD、MC三条线段的数量关系: ;
    (2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
    (拓展延伸)
    (3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.
    15、(8分)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.
    16、(8分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.
    17、(10分)如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.
    18、(10分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若分式 的值为零,则x=________.
    20、(4分)菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC,CE,则△ACE的面积为___________.
    21、(4分)已知如图所示,AB=AD=5,∠B=15°,CD⊥AB于C,则CD=___.
    22、(4分)如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,若图1正方形中MN=1,则CD=____.
    23、(4分)已知某个正多边形的每个内角都是,这个正多边形的内角和为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知抛物线与轴交于两点,与轴交于点.
    (1)求的取值范围;
    (2)若,直线经过点,与轴交于点,且,求抛物线的解析式;
    (3)若点在点左边,在第一象限内,(2)中所得到抛物线上是否存在一点,使直线分的面积为两部分?若存在,求出点的坐标;若不存在,请说明理由.
    25、(10分)为鼓励节约用电,某地用电收费标准规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.
    (1)如果小张家一个月用电128度,那么这个月应缴纳电费多少元?
    (2)如果小张家一个月用电a度,那么这个月应缴纳电费多少元?(用含a的代数式表示)
    (3)如果这个月缴纳电费为147.8元,那么小张家这个月用电多少度?
    26、(12分)解不等式组:,并在数轴上表示出它的解集.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据勾股定理求出三角形的三边,然后根据勾股定理的逆定理即可判断.
    【详解】
    由勾股定理可得:
    A、三角形三边分别为3、,2;
    B、三角形三边分别为、,2;
    C、三角形三边分别为、2,3;
    D、三角形三边分别为2、,;
    ∵D图中(2)2+()2=()2,其他三角形不符合勾股定理逆定理,
    ∴图中的三角形是直角三角形的是D,
    故选:D.
    此题考查了勾股定理和勾股定理逆定理的运用,本题中根据勾股定理计算三角形的三边长是解题的关键.
    2、A
    【解析】
    Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.
    【详解】
    解:Rt△ABC中,BC=5米,tanA=1:,
    ∴tanA=,
    ∴AC=BC÷tanA=5÷=米,
    故选:A.
    此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,解题的关键是熟练掌握坡度的定义,此题难度不大.
    3、A
    【解析】
    求出∠ACB,根据线段垂直平分线的性质求出BE=CE,推出∠BCE=∠B=30°,求出∠ACE,即可求出CE的长,即可求得答案.
    【详解】
    ∵在Rt△ABC中,∠A=90°,∠B=30°,
    ∴∠ACB=60°,
    ∵DE垂直平分斜边BC,
    ∴BE=CE,
    ∴∠BCE=∠B=30°,
    ∴∠ACE=60°﹣30°=30°,
    在Rt△ACE中,∠A=90°,∠ACE=30°,AE=1,
    ∴CE=2AE=2,
    ∴BE=CE=2,
    故选A.
    本题考查了三角形内角和定理,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出CE的长.
    4、D
    【解析】
    根据勾股定理列式计算即可.
    【详解】
    由题意可得:,
    AB+BC=15+9=1.
    故选D.
    本题考查勾股定理的应用,关键在于熟练掌握勾股定理的公式.
    5、A
    【解析】
    根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.
    【详解】
    解:∵k=-3<0,则y随x的增大而增大.
    又∵0>a>a-1,则b>c.
    故选A.
    本题考查了反比例函数图象的性质,关键是掌握反比例函数的性质:
    (1)反比例函数y(k≠0)的图象是双曲线;
    (2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;
    (3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
    6、D
    【解析】
    先根据一次函数y=kx﹣1中,y随x的增大而减小判断出k的符号,再根据一次函数的性质判断出此函数的图象所经过的象限,进而可得出结论.
    【详解】
    解:∵一次函数y=kx﹣1中,y随x的增大而减小,
    ∴k<0,
    ∴此函数图象必过二、四象限;
    ∵b=﹣1<0,
    ∴此函数图象与y轴相交于负半轴,
    ∴此函数图象经过二、三、四象限.
    故选:D.
    本题主要考查一次函数的图象与性质,掌握一次函数的图象与性质是解题的关键.
    7、D
    【解析】
    此题用因式分解法比较简单,提取公因式,可得方程因式分解的形式,即可求解.
    【详解】
    解:x2−x=0,
    x(x−1)=0,
    解得x1=0,x2=1.
    故选:D.
    本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,此题方程两边公因式较明显,所以本题运用的是因式分解法.
    8、C
    【解析】
    分析:根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.
    详解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,
    所以这10次测试成绩比较稳定的是丙,
    故选C.
    点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    先根据勾股定理求出BD,进而判断出△BCD是直角三角形,最后用面积的和即可求出四边形ABCD的面积.
    【详解】
    如图,连接BD,
    在Rt△ABD中,AB=3,DA=4,
    根据勾股定理得,BD=5,
    在△BCD中,BC=12,CD=13,BD=5,
    ∴BC2+BD2=122+52=132=CD2,
    ∴△BCD为直角三角形,
    ∴S四边形ABCD=S△ABD+S△BCD
    =AB∙AD+BC∙BD
    =×3×4+×12×5
    =1
    故答案为:1.
    此题主要考查了勾股定理及逆定理,三角形的面积公式,解本题的关键是判断出△BCD是直角三角形.
    10、
    【解析】
    利用勾股定理直接计算可得答案.
    【详解】
    解:由勾股定理得:斜边
    故答案为:.
    本题考查的是勾股定理的应用,掌握勾股定理是解题的关键.
    11、1
    【解析】
    利用根与系数的关系可得出方程的两根之积为-1,结合方程的一个根为-1,可求出方程的另一个根,此题得解.
    【详解】
    ∵a=1,b=m,c=-1,
    ∴x1•x2==-1.
    ∵关于x一元二次方程x2+mx-1=0的一个根为x=-1,
    ∴另一个根为-1÷(-1)=1.
    故答案为:1.
    此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.
    12、
    【解析】
    采用分解因式法解方程即可.
    【详解】
    解:,解得.
    本题考查了分解因式法解方程.
    13、
    【解析】
    由题意可设E点坐标为(,4),则有AE=,根据AE=CF,可得CF=,再根据四边形ABCD是菱形,BC=k,可得CD=6CF,再根据S菱形ABCD=S四边形ABFD+S△BCF,S四边形ABFD=20,从而可得S菱形ABCD=24,根据S菱形ABCD=BC•AO,即可求得k的值.
    【详解】
    由题意可设E点坐标为(,4),则有AE=,
    ∵AE=CF,∴CF=,
    ∵四边形ABCD是菱形,BC=k,
    ∴CD=BC=k,
    ∴CD=6CF,
    ∴S菱形ABCD=12S△BCF,
    ∵S菱形ABCD=S四边形ABFD+S△BCF,S四边形ABFD=20,
    ∴S菱形ABCD= ,
    ∵S菱形ABCD=BC•AO,
    ∴4k=,
    ∴k=,
    故答案为.
    本题考查了菱形的性质、菱形的面积,由已知推得S菱形ABCD=6S△BCF是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)成立.证明见解析;(3) (1)成立;(2)不成立
    【解析】
    (1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.
    (2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.
    (3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.
    【详解】
    解:(1)证明:延长AE、BC交于点N,如图1(1),
    ∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.
    ∴∠ENC=∠MAE.∴MA=MN.
    ∴△ADE≌△NCE(AAS)
    ∴AD=NC.∴MA=MN=NC+MC=AD+MC.
    (2)AM=DE+BM成立.
    证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.
    ∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
    ∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.
    ∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.
    ∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.
    ∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.
    (3)①结论AM=AD+MC仍然成立.
    证明:延长AE、BC交于点P,如图2(1),
    ∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.
    ∴∠EPC=∠MAE.∴MA=MP.
    ∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.
    ②结论AM=DE+BM不成立.
    证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.
    ∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,
    ∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.
    ∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM
    =∠BAM+∠QAB ∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.
    ∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.
    ∴AM=DE+BM不成立.
    本题是四边形综合题,主要考查了正方形和矩形的性质,全等三角形的性质和判定,等腰三角形的判定,平行线的性质,角平分线的定义等,考查了基本的模型构造:平行和中点构造全等三角形.有较强的综合性.
    15、证明见解析.
    【解析】
    根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.
    【详解】
    ∵在△ABC中,AB=AC,BD=CD,
    ∴AD⊥BC.
    又∵CE⊥AB,
    ∴∠ADB=∠CEB=90°,
    又∵∠B=∠B,
    ∴△ABD∽△CBE.
    本题考查了相似三角形的判定,正确找到相似的条件是解题的关键.
    16、证明见解析
    【解析】
    首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.
    【详解】
    解:∵DE=BF,
    ∴DE+EF=BF+EF,即DF=BE,
    在Rt△ADF和Rt△CBE中,,
    ∴Rt△ADF≌Rt△CBE(HL),
    ∴AF=CE.
    本题考查了全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.
    17、见解析.
    【解析】
    利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,即可证得四边形CEDF是平行四边形.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∵DE=AD,F是BC边的中点,
    ∴FC=BC=AD=DE,
    又∵DE∥FC,
    ∴四边形CEDF是平行四边形.
    本题主要考查了平行四边形的判定与性质,熟练应用平行四边形的判定方法是解题关键.
    18、2+
    【解析】
    试题分析:先求出x2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.
    试题解析:x2=(2﹣)2=7﹣4,
    则原式=(7+4)(7﹣4)+(2+)(2﹣)+
    =49﹣48+1+
    =2+.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    依题意得x2-x-2=1,解得x=2或-1,
    ∵x+1≠1,即x≠-1,
    ∴x=2.
    此题考查的是对分式的值为1的条件的理解和因式分解的方法的运用,该类型的题易忽略分母不为1这个条件.
    20、9或.
    【解析】
    分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.
    【详解】
    解:①如图1,延长EA交DC于点F,
    ∵菱形ABCD的周长为24,
    ∴AB=BC=6,
    ∵∠ABC=60°,
    ∴三角形ABC是等边三角形,
    ∴∠BAC=60°,
    当EA⊥BA时,△ABE是等腰直角三角形,
    ∴AE=AB=AC=6,∠EAC=90°+60°=150°,
    ∴∠FAC=30°,
    ∵∠ACD=60°,
    ∴∠AFC=90°,
    ∴CF=AC=3,
    则△ACE的面积为:AE×CF=×6×3=9;
    ②如图2,过点A作AF⊥EC于点F,
    由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,
    ∵AB=BE=BC=6,
    ∴∠BEC=∠BCE=15°,
    ∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,
    ∴AF=AE,AF=CF=AC=,
    ∵AB=BE=6,
    ∴AE=,
    ∴EF=,
    ∴EC=EF+FC=
    则△ACE的面积为:EC×AF=.
    故答案为:9或.
    本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.
    21、
    【解析】
    根据等边对等角可得∠ADB=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AD.
    【详解】
    ∵AB=AD,
    ∴∠ADB=∠B=15°,
    ∴∠DAC=∠ADB+∠B=30°,
    又∵CD⊥AB,
    ∴CD=AD=×5=.
    故答案为:.
    本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.
    22、
    【解析】
    根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.
    【详解】
    解:如图:∵四边形MNQK是正方形,且MN=1,
    ∴∠MNK=45°,
    在Rt△MNO中,OM=ON=,
    ∵NL=PL=OL=,
    ∴PN=,
    ∴PQ=,
    ∵△PQH是等腰直角三角形,
    ∴PH=FF'==BE,
    过G作GG'⊥EF',
    ∴GG'=AE=MN=,
    ∴CD=AB=AE+BE=+=.
    故答案为:.
    本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.
    23、720°
    【解析】
    先求得这个多边形外角的度数,再求得多边形的边数,根据多边形的内角和公式即可求得这个多边形的边数.
    【详解】
    ∵某个正多边形的每个内角都是,
    ∴这个正多边形的每个外角都是,
    ∴这个多边形的边数为:=6.
    ∴这个正多边形的内角和为:(6-2)×180°=720°.
    故答案为:720°.
    本题考查了多边形的内外角和,熟练运用多边形的内外角和公式是解决问题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)m≠-1;(1)y=-x1+5x-6;(3)点P(,-)或(1,0).
    【解析】
    (1)由于抛物线与x轴有两个不同的交点,可令y=0,则所得方程的根的判别式△>0,可据此求出m的取值范围.
    (1)根据已知直线的解析式,可得到D点的坐标;根据抛物线的解析式,可用m表示出A、B的坐标,即可得到AD、BD的长,代入AD×BD=5,即可求得m的值,从而确定抛物线的解析式.
    (3)直线PA分△ACD的面积为1:4两部分,即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),即可求解.
    【详解】
    解:(1)∵抛物线与x轴有两个不同的交点,
    ∴△=(m-4)1+11(m-1)=m1+4m+4=(m+1)1>0,
    ∴m≠-1.
    (1)∵y=-x1-(m-4)x+3(m-1)=-(x-3)(x+m-1),
    ∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
    则:D(0,-1),
    则有:AD×BD=,
    解得:m=1(舍去)或-1,
    ∴m=-1,
    抛物线的表达式为:y=-x1+5x-6①;
    (3)存在,理由:
    如图所示,点C(0,-6),点D(0,-1),点A(1,0),
    直线PA分△ACD的面积为1:4两部分,
    即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),
    将点H、A的坐标代入一次函数表达式并解得:
    直线HA的表达式为:y=x-1或y=x-5②,
    联立①②并解得:x=或1,
    故点P(,-)或(1,0).
    本题考查的是二次函数综合运用,涉及到一次函数、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.
    25、(1)这个月应缴纳电费64元;(2)如果小张家一个月用电a度,那么这个月应缴纳电费(0.8a-45)元;(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电1度.
    【解析】
    (1)如果小张家一个月用电128度.128<150,所以只有一种情况,每度电0.5元,可求解.
    (2)a>150,两种情况都有,先算出128度电用的钱,再算出剩下的(a﹣128)度的电用的钱,加起来就为所求.
    (3)147.8>128×0.5,所以所用的电超过了128度电,和2中的情况类似,设此时用电a度,可列方程求解.
    【详解】
    (1)0.5×128=64(元)
    答:这个月应缴纳电费64元;
    (2)0.5×150+0.8(a﹣150),
    =75+0.8a﹣120,
    =0.8a﹣45,
    答:如果小张家一个月用电a度(a>150),那么这个月应缴纳电费(0.8a﹣45)元.
    (3)设此时用电a度,
    0.5×150+0.8(a﹣150)=147.8,
    0.8a﹣45=147.8,
    解得a=1.
    答:如果这个月缴纳电费为147.8元,那么小张家这个月用电1度.
    26、﹣2<x≤3
    【解析】
    分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可。
    【详解】
    解:,
    解不等式①得:x>﹣2,
    解不等式②得:x≤3,
    所以不等式组的解集为﹣2<x≤3,
    在同一数轴上分别表示出它们的解集得
    本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    题号





    总分
    得分
    相关试卷

    2024-2025学年海南省儋州市九上数学开学检测模拟试题【含答案】: 这是一份2024-2025学年海南省儋州市九上数学开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年贵州省罗甸县联考数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年贵州省罗甸县联考数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map