2024-2025学年甘肃省兰州外国语学校九上数学开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)二次根式中,字母a的取值范围是( )
A.a<1B.a≤1C.a≥1D.a>1
2、(4分)一元一次不等式组的解集为x>a,且a≠b,则a与b的关系是( )
A.a>bB.a<bC.a>b>0D.a<b<0
3、(4分)一个五边形的内角和为( )
A.540° B.450° C.360° D.180°
4、(4分)如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是( )
A.3B.4C.5D.6
5、(4分)关于反比例函数,下列说法中错误的是( )
A.它的图象分布在一、三象限
B.它的图象过点(-1,-3)
C.当x>0时,y的值随x的增大而增大
D.当x<0时,y的值随x的增大而减小
6、(4分)甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.甲B.乙C.丙D.丁
7、(4分)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )
A.(3,2)B.(3,1)C.(2,2)D.(4,2)
8、(4分)一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )
A.五边形B.六边形C.七边形D.八边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,化简的正确结果是________________.
10、(4分)将直线向上平移一个单位长度得到的一次函数的解析式为_______________.
11、(4分)如图,在矩形中,点为射线上一动点,将沿折叠,得到若恰好落在射线上,则的长为________.
12、(4分)若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.
13、(4分)一组数据2,6,,10,8的平均数是6,则这组数据的方差是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知,求证:)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).利用上述方法完成这个定理的证明.
15、(8分)如图,在平面直角坐标系 中,直线 与 轴,轴分别交于点 ,点 。
(1)求点和点的坐标;
(2)若点 在 轴上,且 求点的坐标。
(3)在轴是否存在点 ,使三角形 是等腰三角形,若存在。请求出点坐标,若不存在,请说明理由。
16、(8分)计算:(1)(1-)+|1-2|+×.
(2)(+2)÷-.
17、(10分)解下列方程:
(1); (2).
18、(10分)已知,如图,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF∥AC交BC于F,请判断BE与FC的数量关系,并说明理由。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,□ABCD的对角线AC,BD相交于点O,若AO+BO=5,则AC+BD的长是________.
20、(4分)矩形ABCD的面积为48,一条边AB的长为6,则矩形的对角线_______.
21、(4分)若,则xy的值等于_______.
22、(4分)计算:3﹣的结果是_____.
23、(4分)实数在数轴上的对应点的位置如图所示,则__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
25、(10分)如图,在中,点、分别是、上的点,且.求证:四边形是平行四边形.
26、(12分)如图,反比例函数的图象经过点
(1)求该反比例函数的解析式;
(2)当时,根据图象请直接写出自变量的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由二次根式有意义的条件可知a-1≥0,解不等式即可.
【详解】
由题意a-1≥0
解得a≥1
故选C.
本题考查了二次根式的意义,掌握被开方数需大于等于0即可解题.
2、A
【解析】
根据不等式组解集的“同大取较大”的原则,a≥b,由已知得a>b.
【详解】
解:∵的解集为x>a,且a≠b,
∴a>b.
故选:A.
本题考查了不等式组解集的四种情况:①同大取较大,②同小取较小,③小大大小中间找,④大大小小解不了.
3、A
【解析】【分析】直接利用多边形的内角和公式进行计算即可.
【详解】根据正多边形内角和公式:180°×(5﹣2)=540°,
即一个五边形的内角和是540度,
故选A.
【点睛】本题主要考查了正多边形内角和,熟练掌握多边形的内角和公式是解题的关键.
4、B
【解析】
解:设两个阴影部分三角形的底为AD,CB,高分别为h1,h2,则h1+h2为平行四边形的高,
∴
=4
故选:B
本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.
5、C
【解析】
试题分析:反比例函数的性质:当时,图象位于一、三象限,在每一象限,y随x的增大而减小;当时,图象位于二、四象限,在每一象限,y随x的增大而增大.
解:A、因为,所以它的图象分布在一、三象限,B、它的图象过点(-1,-3),D、当,y的值随x的增大而减小,均正确,不符合题意;
C、当,y的值随x的增大而减小,故错误,本选项符合题意.
考点:反比例函数的性质
点评:反比例函数的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
6、A
【解析】
试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.
解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,
∴S甲2=S乙2<S丙2<S丁2,
∴发挥稳定的运动员应从甲和乙中选拔,
∵甲的平均数是561,乙的平均数是560,
∴成绩好的应是甲,
∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;
故选A.
【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7、A
【解析】
∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,
∴=,
∵BG=6,
∴AD=BC=2,
∵AD∥BG,
∴△OAD∽△OBG,
∴=,
∴=,
解得:OA=1,∴OB=3,
∴C点坐标为:(3,2),
故选A.
8、D
【解析】
设多边形的边数为n,多加的外角度数为x,根据内角和与外角度数的和列出方程,由多边形的边数n为整数求解可得.
【详解】
设这个多边形的边数为n,依题意得
(n-2)×180°=3×360°,
解得n=8,
∴这个多边形为八边形,
故选D.
此题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
根据二次根式的性质,绝对值的性质,先化简代数式,再合并.
【详解】
解:∵2<x<3,
∴|x-2|=x-2,|3-x|=3-x,
原式=|x-2|+3-x
=x-2+3-x
=1.
故答案为:1.
本题考查二次根式的性质及绝对值的性质,能正确根据二次根式的性质进行化简是解题的关键.
10、
【解析】
解:由平移的规律知,得到的一次函数的解析式为.
11、或15
【解析】
如图1,根据折叠的性质得到AB=A=5,E=BE,根据勾股定理求出BE,如图2,根据折叠的性质得到A=AB=5,求得AB=BF=5, 根据勾股定理得到CF=4根据相似三角形的性质列方程即可得到结论.
【详解】
∵四边形ABCD是矩形,
∴AD=BC=3,CD=AB=5,
如图1,由折叠得AB=A=5,E=BE,
∴,
∴,
在Rt△中, ,
∴,
解得BE=;
如图2,由折叠得AB=A=5,
∵CD∥AB,
∴∠=∠,
∵,
∴,
∵AE垂直平分,
∴BF=AB=5,
∴,
∵CF∥AB,
∴△CEF∽△ABE,
∴,
∴,
∴BE=15,
故答案为:或15.
此题考查矩形的性质,折叠的性质,勾股定理,相似三角形的判定及性质,根据折叠的要求正确画出符合题意的图形进行解答是解题的关键.
12、八
【解析】
360°÷(180°-135°)=8
13、8.
【解析】
根据这组数据的平均数是6,写出平均数的表示式,得到关于x的方程,求出其中x的值,再利用方差的公式,写出方差的表示式,得到结果.
【详解】
∵数据2,6,,10,8的平均数是6,
∴
∴x=4,
∴这组数据的方差是.
考点: 1.方差;2.平均数.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
在AB上截取AG=DE,作GH∥BC,则可得△AGH∽△ABC,再由已知条件证明△AGH≌△DEF即可证明:△ABC∽△DEF.
【详解】
证明:在上截取,作.
.
.
∵,
∴,
∵,
∴,
∴.
本题考查了相似三角形的判定和性质以及全等三角形的判定,解题的关键是正确作出辅助线构造全等三角形.
15、(1);(2);(3)在 轴上存在点 使为等腰三角形
【解析】
(1)分别代入y=0,x=0,求出与之对应的x,y值,进而可得出点A,B的坐标;
(2)由三角形的面积公式结合S△BOP= S△AOB,可得出OP=OA,进而可得出点P的坐标;
(3)由OA,OB的长可求出AB的长,分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质可求出点M的坐标.
【详解】
解:(1)当y=0时,-2x+4=0,解得:x=2,
∴点A的坐标为(2,0);
当x=0时,y=-2x+4=4,
∴点B的坐标为(0,4).
(2))∵点P在x轴上,且S△BOP= S△AOB,
∴OP=OA=1,
∴点P的坐标为(-1,0)或(1,0).
(3))∵OB=4,OA=2,
∴AB=
分三种情况考虑(如图所示):
①当AB=AM时,OM=OB=4,
∴点M1的坐标为(0,-4);
②当BA=BM时,BM=2,
∴点M2的坐标为(0,4+2 ),点M3的坐标为(0,4-2);
③当MA=MB时,设OM=a,则BM=AM=4-a,
∴AM2=OM2+OA2,即(4-a)2=a2+22,
∴a=,
∴点M4的坐标为(0,).
综上所述:在y轴上存在点M,使三角形MAB是等腰三角形,点M坐标为(0,-4),(0,4+2),(0,4-2)和(0,).
本题考查一次函数图象上点的坐标特征、三角形的面积、勾股定理以及等腰三角形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用两三角形面积间的关系,找出OP的长;(3)分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质求出点M的坐标.
16、.(1) 3+2;(2) 2.
【解析】
(1)先去绝对值和乘法,再计算加减即可;
(2)先计算除法和化简二次根式,再相加减即可;
【详解】
(1)原式=1-+2-1+2
=+2
(2)原式=.
=2.
考查了二次根式的混合运算,解题关键熟记运算顺序和法则.
17、(1)x=−4;(2)
【解析】
(1)利用解分式方程的一般步骤解出方程;
(2)利用配方法解出一元二次方程.
【详解】
解:(1)
方程两边同乘(x−2),得2x+2=x−2
解得,x=−4,
检验:当x=−4时,x−2=−6≠0,
∴x=−4是原方程的解;
(2)x2−6x+6=0
∴x2−6x=−6
∴x2−6x+9=−6+9
∴(x−3)2=3
∴x−3=
解得:.
本题考查的是分式方程的解法、一元二次方程的解法,掌握解分式方程的一般步骤、配方法解一元二次方程的一般步骤是解题的关键.
18、见解析
【解析】
由BD是∠ABC的平分线,DE∥BC,易证得△EBD是等腰三角形,即BE=DE,又由DE∥BC,EF∥AC,可得四边形DEFC是平行四边形,即可得DE=FC,即可证得BE=FC.
【详解】
证明:∵BD是∠ABC的平分线,
∴∠EBD=∠CBD,
∵DE∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
∵DE∥BC,EF∥AC,
∴四边形DEFC是平行四边形,
∴DE=FC,
∴BE=FC.
本题考查了平行四边形的判定与性质、等腰三角形的判定、角平分线的定义以及平行线的性质.此题难度适中,注意有角平分线与平行线易得等腰三角形,注意数形结合思想的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1;
【解析】
根据平行四边形的性质可知:AO=OC,BO=OD,从而求得AC+BC的长.
【详解】
∵四边形ABCD是平行四边形
∴OC=AO,OB=OD
∵AO=BO=2
∴OC+OD=2
∴AC+BD=AO+BO+CO+DO=1
故答案为:1.
本题考查平行四边形的性质,解题关键是得出OC+OD=2.
20、10
【解析】
先根据矩形面积公式求出AD的长,再根据勾股定理求出对角线BD即可.
【详解】
解:∵矩形ABCD的面积为48,一条边AB的长为6,
∴AD=48÷6=8,
∴对角线BD=,
故答案为:10.
本题主要考查了勾股定理的应用,解决此题的关键是根据矩形面积求出另一边的长.
21、1
【解析】
直接利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.
【详解】
解:∵,
∴x-1=0, y-1=0,
解得:x=1,y=1,
则xy=1.
此题主要考查了完全平方公式,偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.
22、2.
【解析】
直接利用二次根式的加减运算法则计算得出答案.
【详解】
解:-=.
故答案为:.
此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.
23、
【解析】
首先根据数轴的含义,得出,然后化简所求式子,即可得解.
【详解】
根据数轴,可得
∴
原式=
故答案为.
此题主要考查绝对值的性质,熟练掌握,即可解题.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;
(2)见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.
【详解】
(1)证明:∵AE∥BC,DE∥AB ,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
25、见解析.
【解析】
在▱ABCD中,根据平行四边形的性质可得AB=CD,AB∥CD,又由于BE=CF,则AE=CF,根据平行四边形的判定可证四边形AECF是平行四边形.
【详解】
∵四边形是平行四边形,
∴且
∵
∴
∴
∴四边形是平行四边形
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.
26、(1)(2)或
【解析】
(1)首先设反比例函数解析式为y=,把点(-1,3)代入反比例函数解析式,进而可以算出k的值,进而得到解析式;
(2)根据反比例函数图象可直接得到答案.
【详解】
(1)设反比例函数解析式为,把点代入得:,
∴函数解析式为;(2)或.
此题主要考查了待定系数法求反比例函数解析式,以及利用函数图象求自变量的值,关键是掌握凡是反比例函数图象经过的点必能满足解析式.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
平均数(cm)
561
560
561
560
方差s2
3.5
3.5
15.5
16.5
2024-2025学年甘肃省庆阳市九上数学开学监测试题【含答案】: 这是一份2024-2025学年甘肃省庆阳市九上数学开学监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年抚州市重点中学九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年抚州市重点中学九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年北京市第一五六中学九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年北京市第一五六中学九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。