|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题12.7 因式分解专项训练(40题)-2024-2025学年八年级数学上册讲义(华东师大版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题12.7 因式分解专项训练(40题)(华东师大版)(原卷版).docx
    • 解析
      专题12.7 因式分解专项训练(40题)(华东师大版)(解析版).docx
    专题12.7 因式分解专项训练(40题)-2024-2025学年八年级数学上册讲义(华东师大版)01
    专题12.7 因式分解专项训练(40题)-2024-2025学年八年级数学上册讲义(华东师大版)02
    专题12.7 因式分解专项训练(40题)-2024-2025学年八年级数学上册讲义(华东师大版)01
    专题12.7 因式分解专项训练(40题)-2024-2025学年八年级数学上册讲义(华东师大版)02
    专题12.7 因式分解专项训练(40题)-2024-2025学年八年级数学上册讲义(华东师大版)03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级上册第12章 整式的乘除12.5 因式分解优秀课后作业题

    展开
    这是一份数学八年级上册第12章 整式的乘除12.5 因式分解优秀课后作业题,文件包含专题127因式分解专项训练40题华东师大版原卷版docx、专题127因式分解专项训练40题华东师大版解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。


    1.(23-24八年级·山东青岛·阶段练习)因式分解:
    (1)7x2-63;
    (2)-4a3b2+12a2b-4ab;
    (3)ax-y-by-x+cx-y;
    (4)y2-9(x+y)2.
    【答案】(1)7x+3x-3
    (2)-4aba2b-3a+1
    (3)x-ya+b+c
    (4)-3x+4y3x+2y
    【分析】本题考查了综合提公因式和公式法进行因式分解,提公因式法进行因式分解,利用平方差公式进行因式分解等知识.熟练掌握综合提公因式和公式法进行因式分解,提公因式法进行因式分解,利用平方差公式进行因式分解是解题的关键.
    (1)综合提公因式和公式法进行因式分解即可;
    (2)利用提公因式法进行因式分解即可;
    (3)利用提公因式法进行因式分解即可;
    (4)利用平方差公式进行因式分解即可.
    【详解】(1)解:7x2-63=7x2-9=7x+3x-3;
    (2)解:-4a3b2+12a2b-4ab=-4aba2b-3a+1;
    (3)解:ax-y-by-x+cx-y=x-ya+b+c;
    (4)解:y2-9(x+y)2=y+3x+yy-3x+y=-3x+4y3x+2y.
    2.(23-24八年级·山东聊城·期末)因式分解
    (1)4x2(a-b)+9(b-a)
    (2)(3a-b)2-4(3a-b)+4
    【答案】(1)(2x+3)(2x-3)(a-b)
    (2)(3a-b-2)2
    【分析】本题主要考查了提公因式法与公式法的综合运用,熟练掌握提公因式法与公式法的综合运用进行因式分解是解决本题的关键.
    (1)先提取公因式,再用平方差公式分解;
    (2)用完全平方公式分解.
    【详解】(1)4x2(a-b)+9(b-a)
    =4x2(a-b)-9(a-b)
    =4x2-9(a-b)
    =(2x+3)(2x-3)(a-b).
    (2)(3a-b)2-4(3a-b)+4
    =[(3a-b)-2]2
    =(3a-b-2)2.
    3.(23-24八年级·湖南张家界·期末)因式分解:
    (1)x3-4x;
    (2)2a2-20ab+50b2.
    【答案】(1)xx+2x-2
    (2)2a-5b2
    【分析】本题主要考查了因式分解,掌握提取公因式和公式法成为解题的关键.
    (1)先提取公因式x,然后再运用平方差公式分解即可;
    (2)先提取公因式2,然后再运用完全平方公式分解即可;
    【详解】(1)解:x3-4x=xx2-4=xx+2x-2.
    (2)解:2a2-20ab+50b2=2a2-10ab+25b2=2a-5b2.
    4.(23-24八年级·四川成都·期末)因式分解:
    (1)a3b-ab
    (2)am-n+bn-m
    【答案】(1)aba+1a-1
    (2)m-na-b
    【分析】本题考查因式分解,
    (1)先提公因式ab,然后再根据平方差公式继续进行分解即可;
    (2)将原式转化为am-n-bm-n,然后提取m-n即可;
    解题的关键是掌握因式分解的基本思路:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解;如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,考虑使用完全平方公式;因式分解要彻底,要分解到不能分解为止.
    【详解】(1)解:a3b-ab
    =aba2-1
    =aba+1a-1;
    (2)am-n+bn-m
    =am-n-bm-n
    =m-na-b.
    5.(23-24八年级·安徽宿州·期末)因式分解:
    (1)4x2+8xy+4y2;
    (2)3xa-b-2yb-a+4b-a.
    【答案】(1)4x+y2
    (2)a-b3x+2y-4
    【分析】本题考查因式分解,熟练掌握提公因式法和乘法公式是解答的关键.
    (1)先提取公因式,再利用完全平方公式进行因式分解即可;
    (2)利用提取公因式法进行因式分解即可.
    【详解】(1)解:4x2+8xy+4y2
    =4x2+2xy+y2
    =4x+y2;
    (2)解:3xa-b-2yb-a+4b-a
    =a-b3x+2y-4.
    6.(23-24八年级·浙江舟山·期末)因式分解:
    (1)x2-4;
    (2)x3-2x2+x.
    【答案】(1)x+2x-2
    (2)xx-12
    【分析】本题考查了因式分解,掌握因式分解的方法是解题的关键.
    (1)根据平方差公式直接解题即可;
    (2)先提公因式x,然后根据完全平方公式因式分解即可求解.
    【详解】(1)解:原式=x+2x-2;
    (2)解:原式=xx2-2x+1,
    =xx-12.
    7.(23-24八年级·湖南张家界·期末)因式分解:
    (1)xy2-4x
    (2)3x2-18xy+27y2
    【答案】(1)xy+2y-2
    (2)3x-3y2
    【分析】本题考查因式分解,熟练掌握用提公因式与公式法分解因式是解题的关键.
    (1)先提公因式x,再用平方差公式分解即可;
    (2)先提公因式3,再用完全平方公式分解即可.
    【详解】(1)解:xy2-4x
    =xy2-4
    =xy+2y-2.
    (2)解:3x2-18xy+27y2
    =3x2-6xy+9y2
    =3x-3y2.
    8.(23-24八年级·江苏扬州·阶段练习)因式分解:
    (1)9x2-16;
    (2)2x3y-4x2y2+2xy3.
    【答案】(1)3x+43x-4
    (2)2xyx-y2
    【分析】本题考查了利用平方差公式分解因式,综合提公因式和公式法分解因式.熟练掌握利用平方差公式分解因式,综合提公因式和公式法分解因式是解题的关键.
    (1)利用平方差公式分解因式即可;
    (2)利用综合提公因式和公式法分解因式即可.
    【详解】(1)解:9x2-16=3x+43x-4;
    (2)解:2x3y-4x2y2+2xy3=2xyx2-2xy+y2=2xyx-y2.
    9.(23-24八年级·陕西·阶段练习)因式分解:
    (1)2x2-12xy+18y2
    (2)9m-2n2-m+2n2
    【答案】(1)2x-3y2
    (2)8m-nm-4n
    【分析】本题主要考查因式分解:
    (1)原式提取公因数2后,再运用完全平方公式进行因式分解即可;
    (2)原式运用平方差公式进行因式分解即可
    【详解】(1)解:2x2-12xy+18y2
    =2x2-6xy+9y2
    =2x-3y2;
    (2)解:9m-2n2-m+2n2
    =3m-2n+m+2n3m-2n-m+2n
    =3m-6n+m+2n3m-6n-m-2n
    =4m-4n2m-8n
    =8m-nm-4n
    10.(23-24八年级·宁夏银川·期中)因式分解:
    (1)x2-y2+3x-3y.
    (2)x2+y22-4x2y2.
    【答案】(1)x-yx+y+3
    (2)x+y2x-y2
    【分析】本题主要考查提取公因数法,公式法因式分解,掌握乘法公式的运用,因式分解的概念是解题的关键.
    (1)根据平方差公式,提取公因式进行因式分解即可;
    (2)运用乘方公式,完全平方公式进行因式分解即可求解.
    【详解】(1)解:x2-y2+3x-3y
    =x+yx-y+3x-y
    =x-yx+y+3;
    (2)解:x2+y22-4x2y2
    =x2+y2+2xyx2+y2-2xy
    =x+y2x-y2.
    11.(23-24八年级·广西桂林·阶段练习)因式分解:
    (1)x2y-8y;
    (2)m4-81.
    【答案】(1)yx2-8
    (2)m-3m+3m2+9
    【分析】本题主要考查了提取公因式法、公式法分解因式.选取适当的方法进行因式分解是解题关键.
    (1)利用提公因式分解即可;
    (2)利用平方差公式进行因式分解即可.
    【详解】(1)解:x2y-8y=yx2-8;
    (2)解:m4-81=m2-9m2+9=m-3m+3m2+9.
    12.(23-24八年级·辽宁丹东·期中)因式分解
    (1)-2a3+12a2-18a;
    (2)9m+n2-m-n2.
    【答案】(1)-2aa-32;
    (2)42m+nm+2n.
    【分析】(1)先提公因式,再利用完全平方公式因式分解即可;
    (2)利用平方差公式先分解,再提公因式即可;
    本题考查了因式分解,掌握因式分解的方法是解题的关键.
    【详解】(1)解:原式=-2aa2-6a+9,
    =-2aa-32;
    (2)解:原式=3m+n2-m-n2
    =3m+n+m-n3m+n-m-n,
    =4m+2n2m+4n,
    =42m+nm+2n.
    13.(23-24八年级·湖南郴州·期中)因式分解.
    (1)2x2-6xy
    (2)m2a-b+n2b-a
    【答案】(1)2xx-3y
    (2)a-bm+nm-n
    【分析】此题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
    (1)运用提公因式法进行分解即可;
    (2)首先变号,然后再提公因式a-b,再利用平方差公式进行分解即可.
    【详解】(1)2x2-6xy
    =2xx-3y
    (2)m2(a-b)+n2(b-a),
    =m2(a-b)-n2(a-b),
    =(a-b)(m2-n2),
    =(a-b)(m+n)(m-n).
    14.(23-24八年级·江苏徐州·期中)因式分解:
    (1)3a3-12ab2;
    (2)2mx2-4mx+2m;
    (3)a2(x-y)+b2(y-x);
    (4)x4-2x2+1.
    【答案】(1)3aa+2ba-2b
    (2)2mx-12
    (3)x-ya+ba-b
    (4)x+12x-12
    【分析】本题主要考查因式分解:
    (1)原式提取公因式3a后,运用平方差公式进行因式分解既可;
    (2)原式提取公因式2m后,运用完全平方公式进行因式分解既可;
    (3)原式提取公因式x-y后,运用平方差公式进行因式分解既可;
    (4)原式先根据完全平方公式分解因式后,再根据平方差公式因式分解即可
    【详解】(1)解:3a3-12ab2
    =3aa2-4b2
    =3aa+2ba-2b;
    (2)解:2mx2-4mx+2m
    =2mx2-2x+1
    =2mx-12;
    (3)解:a2(x-y)+b2(y-x)
    =a2(x-y)-b2(x-y)
    =x-ya2-b2
    =x-ya+ba-b;
    (4)解:x4-2x2+1
    =x2-12
    =x+12x-12
    15.(23-24八年级·陕西西安·阶段练习)把下列各式因式分解:
    (1)-3x3+6x2y2-3xy3
    (2)2aa-b+8a3b-a
    (3)a-2b2-4a2
    (4)x2+2x2+2x2+2x+1
    【答案】(1)-3xx2-2xy2+y3
    (2)2aa-b1-2a1+2a
    (3)-3a-2ba+2b
    (4)x+14
    【分析】(1)先提取公因式,再套用公式分解即可.
    (2) 先提取公因式,再套用公式分解即可.
    (3)平方差公式分解即可.
    (4)完全平方公式分解即可.
    本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.
    【详解】(1)-3x3+6x2y2-3xy3
    =-3xx2-2xy2+y3.
    (2)2aa-b+8a3b-a
    =2aa-b1-4a2
    =2aa-b1-2a1+2a.
    (3)a-2b2-4a2
    =a-2b+2aa-2b-2a
    =-3a-2ba+2b.
    (4)x2+2x2+2x2+2x+1
    =x2+2x+12
    =x+14.
    16.(23-24八年级·陕西渭南·期末)因式分解:xx-y2-yy-x2.
    【答案】x-y3
    【分析】本题考查了因式分解,先将式子变形为xx-y2-yx-y2,再利用提公因式法分解因式即可得出答案.
    【详解】解:xx-y2-yy-x2
    =xx-y2-yx-y2
    =x-y2x-y
    =x-y3.
    17.(23-24八年级·山东聊城·期末)把下列各式进行因式分解:
    (1)4a3b2-6a2b;
    (2)x2(x-3)+4(3-x);
    (3)4+12(x-y)+9(x-y)2;
    (4)(3x-2)2-(2x+7)2.
    【答案】(1)2a2b(2ab-3)
    (2)(x-3)(x+2)(x-2)
    (3)(3x-3y+2)2
    (4)5(x+1)(x-9)
    【分析】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.
    (1)直接提取公因式2a2b即可;
    (2)先提取公因式x-3,再利用平方差公式分解即可;
    (3)把x-y看作一个整体,利用完全平方公式即可;
    (4)利用平方差公式即可.
    【详解】(1)解:4a3b2-6a2b=2a2b2ab-3.
    (2)解:x2(x-3)+4(3-x)=x-3(x2-4)=(x-3)(x+2)(x-2).
    (3)解:4+12(x-y)+9(x-y)2=2+3x-y2=(3x-3y+2)2.
    (4)解:(3x-2)2-(2x+7)2
    =3x-2+2x+73x-2-2x-7=5x+5x-9=5x+1x-9.
    18.(23-24八年级·山东潍坊·期末)因式分解:
    (1)a4-16;
    (2)4x2y+12xy+9y;
    (3)9a2x-y+16b2y-x.
    【答案】(1)a+2a-2a2+4
    (2)y2x+32
    (3)x-y3a-4b3a+4b
    【分析】本题考查了利用平方差公式进行因式分解,综合提公因式和公式法进行因式分解.熟练掌握利用平方差公式进行因式分解,综合提公因式和公式法进行因式分解是解题的关键.
    (1)利用平方差公式进行因式分解即可;
    (2)利用综合提公因式和公式法进行因式分解即可;
    (3)利用综合提公因式和公式法进行因式分解即可.
    【详解】(1)解:a4-16=a2-4a2+4=a+2a-2a2+4;
    (2)解:4x2y+12xy+9y=y4x2+12x+9=y2x+32;
    (3)解:9a2x-y+16b2y-x=x-y9a2-16b2=x-y3a-4b3a+4b.
    19.(23-24八年级·内蒙古·期中)因式分解:
    (1)6a(a-b)+8b(a-b);
    (2)m2(n-3)+4(3-n).
    【答案】(1)2(a-b)3a+4b
    (2)(n-3)(m-2)m+2
    【分析】本题主要考查因式分解:
    (1)原式提取公因式2a-b即可;
    (2)原式提取公因式n-3后,再运用平方差公式进行因式分解即可
    【详解】(1)解:6a(a-b)+8b(a-b)
    =2(a-b)(3a+4b);
    (2)解:m2(n-3)+4(3-n)
    =m2(n-3)-4(n-3)
    =n-3m2-4
    =(n-3)(m-2)(m+2).
    20.(23-24八年级·山东枣庄·阶段练习)因式分解:a2x-2ax+x-xb2.
    【答案】xa+b-1a-b-1
    【分析】本题考查了提公因式法与公式法的综合运用.先提公因式x,然后利用完全平方公式分解,再利用平方差公式继续分解即可解答.
    【详解】解:a2x-2ax+x-xb2
    =xa2-2a+1-b2
    =xa-12-b2
    =xa+b-1a-b-1.
    21.(23-24八年级·广东茂名·期末)因式分解:
    (1)25c2-49a2b2;
    (2)3ax2-6axy+3ay2;
    【答案】(1)5c+7ab5c-7ab
    (2)3ax-y2
    【分析】本题主要考查了分解因式,解题的关键是熟练掌握分解因式的方法,准确计算.
    (1)用平方差公式分解因式即可.
    (2)先提公因式,然后用完全平方公式分解因式即可.
    【详解】(1)解:25c2-49a2b2
    =5c2-7ab2
    =5c+7ab5c-7ab;
    (2)解:3ax2-6axy+3ay2
    =3ax2-2xy+y2
    =3ax-y2.
    22.(23-24八年级·广东深圳·期中)因式分解:
    (1)8a3b2+12a3bc
    (2)x-22-x+2
    【答案】(1)4a3b2b+3c
    (2)x-2x-3
    【分析】本题考查因式分解—提公因式法,
    (1)直接提取公因式4a3b即可,
    (2)将原式转化为x-22-x-2,然后再提取公因式x-2即可;
    解题的关键是掌握提公因式的一般步骤,确定一个多项式的公因式时,要对数字系数和字母分别进行考虑,可归纳为“五看”:一看系数,若各项系数都是整数,应提取各项系数的最大公因数;二看字母,公因式的字母是各项相同的字母;三看字母的指数,各相同字母的指数取指数最低的;四看整体,如果多项式中含有相同的多项式,应将其看成整体,不要拆开;五看首项符号,若多项式中首项的符号为“-”,则公因式的符号一般为负.
    【详解】(1)解:8a3b2+12a3bc
    =4a3b2b+3c;
    (2)x-22-x+2
    =x-22-x-2
    =x-2x-2-1
    =x-2x-3.
    23.(23-24八年级·陕西西安·期中)因式分解
    (1)2m3-12m2+18m
    (2)a2-b2+2a+1
    【答案】(1)2mm-32
    (2)a+b+1a-b+1
    【分析】本题考查因式分解,掌握提公因式法与公式法分解因式是解题关键,但要注意先提公因式再利用公式.
    (1)先提公因式,再利用完全平方公式分解即可;
    (2)原式整理为a2+2a+1-b2,先利用完全平方公式分解,再利用平方差公式分解即可.
    【详解】(1)解:原式=2mm2-6m+9
    =2mm-32;
    (2)解:原式=a2+2a+1-b2
    =a+12-b2
    =a+1+ba+1-b
    =a+b+1a-b+1.
    24.(23-24八年级·广西贵港·期中)因式分解:
    (1)x2-y2-4y-4;
    (2)xy2a-b-x2yb-a.
    【答案】(1)x+y+2x-y-2
    (2)xya-bx+y
    【分析】本题考查了因式分解,解题的关键是:掌握提取公因式法和完全平方公式分解因式;
    (1)利用分组分解法因式分解即可;
    (2)原式变形后提取公因式xya-b即可.
    【详解】(1)解:原式=x2-y2+4y+4
    =x2-y+22
    =x+y+2x-y-2;
    (2)解:原式=x2ya-b+xy2a-b
    =xya-bx+y.
    25.(23-24八年级·江苏泰州·阶段练习)因式分解:
    (1)mm-1+41-m;
    (2)-8ax2+16axy-8ay2;
    (3)4a-2b2-92a+b2;
    (4)1-a2-b2+2ab.
    【答案】(1)m-1m-4
    (2)-8ax-y2
    (3)-8a-b4a+7b
    (4)1+a-b1-a+b
    【分析】(1)利用提公因式法即可求解;
    (2)先提公因式,再利用完全平方公式因式分解即可;
    (3)利用平方差公式因式分解即可;
    (4)先利用分组分解法因式分解,再利用平方差公式因式分解即可;
    本题考查了因式分解,掌握因式分解的方法是解题的关键.
    【详解】(1)解:原式=mm-1-4m-1
    =m-1m-4;
    (2)解:原式=-8ax2-2xy+y2
    =-8ax-y2;
    (3)解:原式=2a-2b2-32a+b2
    =2a-2b+32a+b2a-2b-32a+b,
    =8a-b-4a-7b,
    =-8a-b4a+7b;
    (4)解:原式=1-a2-2ab+b2
    =12-a-b2,
    =1+a-b1-a+b.
    26.(23-24八年级·湖南衡阳·期中)因式分解
    (1)3x3-27x;
    (2)x+y2+6x+y+9;
    (3)2x2+x-6;
    (4)x2-4xy-4+4y2.
    【答案】(1)3xx-3x+3
    (2)x+y+32
    (3)2x-3x+2
    (4)x-2y+2x-2y-2
    【分析】本题考查分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
    (1)先提取公因式再利用平方差公式分解因式即可求解;
    (2)根据完全平方公式分解因式;
    (3)根据十字相乘法分解因式即可求解;
    (4)分组法和公式法分解因式即可求解.
    【详解】(1)原式=3xx2-9=3xx-3x+3;
    (2)原式=x+y+32;
    (3)原式=2x-3x+2;
    (4)原式=x2-4xy+4y2-4=x-2y2-4=x-2y+2x-2y-2.
    27.(23-24八年级·四川眉山·期中)因式分解:
    (1)-10xy2+y3+25x2y;
    (2)a3+a2b-ab2-b3.
    【答案】(1)y(5x-y)2
    (2)(a+b)2(a-b)
    【分析】本题考查的因式分解,熟知分组分解法与提取公因式法、公式法分解因式是解题的关键.
    (1)先提取公因式,再利用完全平方公式进行因式分解即可;
    (2)利用分组分解法因式分解即可.
    【详解】(1)解:-10xy2+y3+25x2y
    =y(-10xy+y2+25x2)
    =y(5x-y)2;
    (2)解:a3+a2b-ab2-b3
    =(a3+a2b)-(ab2+b3)
    =a2(a+b)-b2(a+b)
    =(a+b)(a2-b2)
    =(a+b)2(a-b).
    28.(23-24八年级·上海杨浦·期末)因式分解:-2mnx2+m2x2+n2x2-4m-n2;
    【答案】x+2x-2m-n2
    【分析】本题租用考查了分解因式,先分组得到mx-nx2-4m-n2,进而提取公因式得到x2-4m-n2,再利用平方差公式分解因式即可.
    【详解】解:-2mnx2+m2x2+n2x2-4m-n2
    =-2mnx2+m2x2+n2x2-4m-n2
    =mx-nx2-4m-n2
    =x2m-n2-4m-n2
    =x2-4m-n2
    =x+2x-2m-n2.
    29.(23-24八年级·湖北·周测)因式分解:
    (1)x+1x+2x+3x+4+xx+5
    (2)a4+2a3+3a2+2a+1
    【答案】(1)x2+5x+3x2+5x+8
    (2)a2+a+12
    【分析】本题考查了因式分解,
    (1)本题先利用多项式乘以多项式计算得到两组多项式,再利用十字相乘法进行因式分解;
    (2)本题先分组依次提公因式,再利用公式法进行因式分解.
    【详解】(1)解:x+1x+2x+3x+4+xx+5
    =x+2x+3x+1x+4+xx+5
    =x2+5x+6x2+5x+4+x2+5x
    =x2+5x2+10x2+5x+24+x2+5x
    =x2+5x2+11x2+5x+24
    =x2+5x+3x2+5x+8;
    (2)解:a4+2a3+3a2+2a+1
    =a4+a3+a3+a2+2a2+2a+1
    =a3a+1+a2a+1+2aa+1+1
    =a3a+1+a2a+1+2aa+1+1
    =aa+12+2aa+1+1
    =aa+1+12
    =a2+a+12.
    30.(23-24八年级·上海·期末)因式分解:16-14a2+35ab-925b2.
    【答案】4+12a-35b4-12a+35b
    【分析】本题考查的是利用分组分解法分解因式,先把后三项作为一组,利用完全平方公式分解因式,再利用平方差公式分解因式即可,熟练的分组是解本题的关键.
    【详解】解:16-14a2+35ab-925b2
    =16-14a2-35ab+925b2
    =42-12a-35b2
    =4+12a-35b4-12a+35b.
    31.(23-24八年级·河南漯河·阶段练习)因式分解:
    (1)x3y-xy;
    (2)12a2bx-y-4aby-x;
    (3)m4-2m2n2+n4;
    (4)a2c-abd-abc+a2d.
    【答案】(1)xy(x+1)(x-1)
    (2)4ab(x-y)(3a+1)
    (3)(m+n)2(m-n)2
    (4)a(a-b)(c+d)
    【分析】题目主要考查提公因式及公式法因式分解,熟练掌握运算法则是解题关键
    (1)先提取公因式,然后利用平方差公式因式分解即可;
    (2)先进行变形,然后提取公因式即可;
    (3)先利用完全平方公式因式分解,然后再利用平方差公式即可;
    (4)先提取公因式,然后利用十字相乘法因式分解即可.
    【详解】(1)解:x3y-xy
    =xy(x2-1)
    =xy(x+1)(x-1)
    (2)12a2bx-y-4aby-x
    =12a2bx-y+4abx-y
    =4ab(x-y)(3a+1)
    (3)m4-2m2n2+n4
    =(m2)2-2m2n2+(n2)2
    =(m2-n2)2
    =(m+n)2(m-n)2
    (4)a2c-abd-abc+a2d
    =a2c-abd-abc+a2d
    =a(ac-bd-bc+ad)
    =a(a-b)(c+d).
    32.(23-24八年级·四川内江·期中)因式分解
    (1)ax-3+2bx-3
    (2)13x2-2x+3;
    (3)x2-2xy-3y2
    【答案】(1)x-3a+2b
    (2)13x-32
    (3)x+yx-3y
    【分析】
    本题考查了因式分解.
    (1)运用提公因式法分解因式即可;
    (2)先通公因式,再运用公式法分解因式即可;
    (3)运用十字相乘法分解因式即可.
    熟练掌握各种分解因式的方法是解题的关键.
    【详解】(1)ax-3+2bx-3=x-3(a+2b) ;
    (2)13x2-2x+3
    =13(x2-6x+9)
    =13(x-3)2;
    (3)x2-2xy-3y2=(x+y)(x-3y).
    33.(23-24八年级·上海徐汇·阶段练习)因式分解:x4-3x2-4
    【答案】(x2+1)(x+2)(x-2),
    【分析】本题考查的是十字相乘法因式分解,掌握十字相乘法、平方差公式因式分解是解题的关键.先利用十字相乘法因式分解,在利用平方差公式进行因式分解.
    【详解】解:x4-3x2-4
    =(x2+1)(x2-4)
    =(x2+1)(x+2)(x-2),
    34.(23-24八年级·重庆北碚·期中)因式分解
    (1)15a2b4+5a2b2
    (2)-2a4+4a2-2
    (3)25a+3b2x+y+93a-b2-x-y
    【答案】(1)5a2b23b2+1
    (2)-2a+12a-12
    (3)-4x+y7a+6b2a-9b
    【分析】本题主要考查了分解因式:
    (1)提取公因式5a2b2分解因式即可;
    (2)先提取公因数-2,再利用完全平方公式和平方差公式分解因式即可;
    (3)先提取公因式x+y,再利用平方差公式分解因式即可.
    【详解】(1)解:15a2b4+5a2b2
    =5a2b23b2+1;
    (2)解:-2a4+4a2-2
    =-2a4-2a2+1
    =-2a2-12
    =-2a+1a-12
    =-2a+12a-12;
    (3)解:25a+3b2x+y+93a-b2-x-y
    =x+y25a+3b2-93a-b2
    =x+y5a+3b+33a-b5a+3b-33a-b
    =x+y14a+12b-4a+18b
    =-4x+y7a+6b2a-9b.
    35.(23-24八年级·安徽·专题练习)把下列多项式因式分解:
    (1)ab2-2ab+a
    (2)x2-y2-2y-1
    【答案】(1)a(b-1)2
    (2)(x-y-1)(x+y+1)
    【分析】本题考查了用提公因式法和公式法,分组分解法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    (1)先提取公因式a,再对余下的多项式利用完全平方公式继续进行因式分解;
    (2)后三项一组,添加带负号的括号后利用完全平方公式分解,再利用平方差公式继续进行因式分解.
    【详解】(1)解:ab2-2ab+a
    =a(b2-2b+1)
    =a(b-1)2;
    (2)x2-y2-2y-1
    =x2-(y2+2y+1)
    =x2-(y+1)2
    =(x-y-1)(x+y+1).
    36.(23-24八年级·湖北武汉·阶段练习)因式分解:
    (1)ax2+2a2x+a3
    (2)a-b3x-y-b-ax+3y
    【答案】(1)ax+a2;
    (2)2a-b2x+y.
    【分析】(1)先提公因式,再利用完全平方公式因式分解即可;
    (2)先后两次利用提公因式法因式分解即可;
    本题考查了因式分解,掌握因式分解的方法是解题的关键.
    【详解】(1)解:原式=ax2+2ax+a2
    =ax+a2;
    (2)解:原式=a-b3x-y+a-bx+3y
    =a-b3x-y+x+3y,
    =a-b4x+2y,
    =2a-b2x+y.
    37.(23-24八年级·陕西西安·阶段练习)因式分解:
    (1)2x2-4x+2
    (2)49a+b2-16a-b2
    【答案】(1)2x-12
    (2)11a+3b3a+11b
    【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.同时因式分解要彻底,直到不能分解为止.
    (1)原式提取2,再利用完全平方公式分解即可;
    (2)利用平方差公式分解即可.
    【详解】(1)解:原式=2x2-2x+1
    =2x-12;
    (2)解:原式=7a+b+4a-b7a+b-4a-b
    =7a+7b+4a-4b7a+7b-4a+4b
    =11a+3b3a+11b.
    38.(23-24八年级·陕西西安·阶段练习)因式分解:
    (1)ma-3+2m23-a;
    (2)-2a3+12a2-18a.
    【答案】(1)ma-31-2m
    (2)-2aa-32
    【分析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    (1)利用提公因式法因式分解即可;
    (2)原式提取-2a,再利用完全平方公式分解即可.
    【详解】(1)解:原式=ma-3-2m2a-3
    =ma-3⋅1-ma-3⋅2m
    =ma-31-2m.
    (2)解:原式=-2a3+12a2-18a
    =-2aa2-6a+9
    =-2aa-32
    39.(23-24八年级·陕西西安·期中)把下列各式因式分解:
    (1)3x2-6x+3;
    (2)2aa-b+8a3b-a.
    【答案】(1)3x-12
    (2)2aa-b(1+2a)(1-2a)
    【分析】本题主要考查了分解因式,利用平方差公式,完全平方公式和提公因式法分解因式是解题的关键.
    (1)先提取公因数3,再利用完全平方公式分解因式即可;
    (2)先提取公因式2aa-b,再利用平方差公式分解因式即可.
    【详解】(1)解:3x2-6x+3
    =3x2-2x+1
    =3x-12;
    (2)解:2aa-b+8a3b-a
    =2aa-b-8a3a-b
    =2aa-b(1-4a2)
    =2aa-b(1+2a)(1-2a).
    40.(23-24八年级·四川成都·期中)因式分解:
    (1)x2y-2xy2+y3
    (2)y2+12-4y2
    【答案】(1)yx-y2
    (2)y+12y-12
    【分析】本题考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.
    (1)先提取公因式y,再利用完全平方公式因式分解即可;
    (2)利用平方差公式和完全平方公式进行因式分解即可.
    【详解】(1)解:x2y-2xy2+y3
    =yx2-2xy+y2
    =yx-y2;
    (2)解:y2+12-4y2
    =y2+2y+1y2-2y+1
    =y+12y-12.
    相关试卷

    初中数学华东师大版(2024)八年级上册第11章 数的开方11.2 实数精品一课一练: 这是一份初中数学华东师大版(2024)八年级上册<a href="/sx/tb_c16448_t7/?tag_id=28" target="_blank">第11章 数的开方11.2 实数精品一课一练</a>,文件包含专题114实数的混合运算专项训练50题华东师大版原卷版docx、专题114实数的混合运算专项训练50题华东师大版解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    北师大版(2024)八年级上册7 二次根式精品练习题: 这是一份北师大版(2024)八年级上册<a href="/sx/tb_c91895_t7/?tag_id=28" target="_blank">7 二次根式精品练习题</a>,文件包含专题28二次根式的混合运算专项训练40题北师大版原卷版docx、专题28二次根式的混合运算专项训练40题北师大版解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    初中数学北师大版(2024)八年级上册6 实数精品一课一练: 这是一份初中数学北师大版(2024)八年级上册<a href="/sx/tb_c10028_t7/?tag_id=28" target="_blank">6 实数精品一课一练</a>,文件包含专题27实数的混合运算专项训练40题北师大版原卷版docx、专题27实数的混合运算专项训练40题北师大版解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题12.7 因式分解专项训练(40题)-2024-2025学年八年级数学上册讲义(华东师大版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map