还剩42页未读,
继续阅读
所属成套资源:北师大版八年级数学下册压轴题攻略(原卷版+解析)
成套系列资料,整套一键下载
北师大版八年级数学下册压轴题攻略专题02三角形中的三种几何最值模型(原卷版+解析)
展开
这是一份北师大版八年级数学下册压轴题攻略专题02三角形中的三种几何最值模型(原卷版+解析),共45页。
专题02 三角形中的三种几何最值模型类型一、将军饮马模型①一动两定 ②两动一定 例1.如图,O为矩形ABCD对角线AC,BD的交点,AB=8,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是____________.例2.如图,平面直角坐标系中,点是直线上一动点,将点向右平移1个单位得到点,点,则的最小值为________.例3.在长方形ABCD中,AB=4,BC=8,点P、Q为BC边上的两个动点(点P位于点Q的左侧,P、Q均不与顶点重合),PQ=2(1)如图①,若点E为CD边上的中点,当Q移动到BC边上的中点时,求证:AP=QE;(2)如图②,若点E为CD边上的中点,在PQ的移动过程中,若四边形APQE的周长最小时,求BP的长;(3)如图③,若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合),当BP=3,且四边形PQNM的周长最小时,求此时四边形PQNM的面积.【变式训练1】如图,在周长为的菱形中,,,若为对角线上一动点,则的最小值为______.【变式训练2】如图,点P是内任意一点,,点M和点N分别是射线和射线上的动点,,则周长的最小值是______.【变式训练3】如图,直线与轴,轴分别交于和,点、分别为线段、的中点,为上一动点,当的值最小时,点的坐标为 ___________.类型二、胡不归模型背景故事:从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.模型建立:将这个问题数学化,我们不妨设总时间为,则,由可得,提取一个得,若想总的时间最少,就要使得最小,例1.如图,在中,,,,若是边上的动点,则的最小值( )A. B. C. D.例2.如图,在平面直角坐标系中,一次函数分别交x轴、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为__________.【变式训练1】如图,在平面直角坐标系中,直线l分别交x、y轴于B、C两点,点A、C的坐标分别为(3,0)、(0,﹣3),且∠OCB=60°,点P是直线l上一动点,连接AP,则的最小值是______.【变式训练2】如图,直线y=x﹣3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则PC+PB的最小值为___.【变式训练3】如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 _____.【变式训练4】如图,在平面直角坐标系中,直线l1:y=x+和直线l2:y=﹣x+b相交于y轴上的点B,且分别交x轴于点A和点C.(1)求△ABC的面积;(2)点E坐标为(5,0),点F为直线l1上一个动点,点P为y轴上一个动点,求当EF+CF最小时,点F的坐标,并求出此时PF+OP的最小值.类型三、瓜豆模型问题1:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是? 解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.问题2:如图,点C为定点,点P、Q为动点,CP=CQ,且∠PCQ为定值,当点P在直线AB上运动,Q的运动轨迹是? 解析:当CP与CQ夹角固定,且AP=AQ时,P、Q轨迹是同一种图形,且PP1=QQ1理由:易知△CPP1≌△CPP1,则∠CPP1=CQQ1,故可知Q点轨迹为一条直线.模型总结:条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量.结论:① 主动点、从动点的运动轨迹是同样的图形;② 主动点路径做在直线与从动点路径所在直线的夹角等于定角③ 当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;例1.如图,等边三角形ABC中,AB=4,高线AH=2,D是线段AH上一动点,以BD为边向下作等边三角形BDE,当点D从点A运动到点H的过程中,点E所经过的路径为线段CM,则线段CM的长为_______,当点D运动到点H,此时线段BE的长为__________.例2.如图,正方形的边长为4,为上一点,且,为边上的一个动点,连接,以为边向右侧作等边,连接,则的最小值为_____.例3.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______.【变式训练1】如图所示,在中,,点是上一点,以为一边向右下方作等边,当由点运动到点时,求点运动的路径长.【变式训练2】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为( )A. B. C.1 D.2【变式训练3】如图所示,为等腰直角三角形,,直角顶点在第二象限,点在轴上移动,以为斜边向上作等腰直角,我们发现直角顶点点随着点的移动也在一条直线上移动,求这条直线的函数解析式.课后训练1.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为( )A. B. C. D.2.如图,等边中,,点E为高上的一动点,以为边作等边,连接,,则______________,的最小值为______________.3.如图,▱中,,,为边上一点,则的最小值为______.4.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,,点F是线段AD上的动点,则的最小值为______.5.如图,在平面直角坐标系中,直线l平行于x轴,l上有两点A、B,且点A坐标为(-14,8),点B位于A点右侧,两点相距8个单位,动点P、Q分别从A、B出发,沿直线l向右运动,点P速度为2个单位/秒,点Q速度为6个单位/秒,设运动时间为t秒.(1)用含t的代数式表示P、Q的坐标:P( _________ ),Q( _________ );(2)在P、Q运动过程中,取线段PQ的中点D,当OBD为直角三角形时,求出t的值及相应的点D的坐标;(3)取满足(2)中条件最右侧的D点,若坐标系中存在另一点E(,-4),请问x轴上是否存在一点F,使FD-FE的值最大,若存在,求出最大值;若不存在,说明理由.6.如图所示,在矩形中,,,为的中点,为上一动点,为的中点,连接,求的最小值.7.如图1,已知正方形ABCD,AB=4,以顶点B为直角顶点的等腰Rt△BEF绕点B旋转,BE=BF=,连接AE,CF.(1)求证:△ABE≌△CBF.(2)如图2,连接DE,当DE=BE时,求S△BCF的值.(S△BCF表示△BCF的面积)(3)如图3,当Rt△BEF旋转到正方形ABCD外部,且线段AE与线段CF存在交点G时,若M是CD的中点,P是线段DG上的一个动点,当满足MP+PG的值最小时,求MP的值.专题02 三角形中的三种几何最值模型类型一、将军饮马模型①一动两定 ②两动一定 例1.如图,O为矩形ABCD对角线AC,BD的交点,AB=8,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是____________.【答案】【详解】解:过O作OH∥BC,且令OH=2,连接NH,作O点关于BC的对称点K,连接OK,KH,∵OH∥BC,OH=MN=2,∴四边形OMNH是平行四边形,∴OM=NH,∴OM+ON= NH+ON.∵O点关于BC的对称点是点K,∴ON=NK,∴OM+ON= NH+ON= NH+ NK,∵,∴当H、N、K三点共线的时候,OM+ON有最小值,最小值为HK的长.∵OH∥BC,O点关于BC的对称点是点K,∴. ∵O为矩形ABCD对角线AC,BD的交点,O点关于BC的对称点是点K,∴OK=AB=8.∵OH= 2,,∴,∴OM+ON的最小值是.例2.如图,平面直角坐标系中,点是直线上一动点,将点向右平移1个单位得到点,点,则的最小值为________.【答案】【详解】解:设D(-1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,ED,作ES⊥x轴于S,∵AB∥DC,且AB=OD=OC=1,∴四边形ABOD和四边形ABCO是平行四边形,∴AD=OB,OA=BC,∴AD+OA=OB+BC,∵AE=AD,∴AE+OA=OB+BC,即OE=OB+BC,∴OB+CB的最小值为OE,由可知∠AFO=30°,F(-4,0),∴FD=3,∠FDG=60°,∴DG=DF=,∴DE=2DG=3,∴ES=DE=,DS=DE=,∴OS=,∴OE=,∴OB+CB的最小值为.例3.在长方形ABCD中,AB=4,BC=8,点P、Q为BC边上的两个动点(点P位于点Q的左侧,P、Q均不与顶点重合),PQ=2(1)如图①,若点E为CD边上的中点,当Q移动到BC边上的中点时,求证:AP=QE;(2)如图②,若点E为CD边上的中点,在PQ的移动过程中,若四边形APQE的周长最小时,求BP的长;(3)如图③,若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合),当BP=3,且四边形PQNM的周长最小时,求此时四边形PQNM的面积.【答案】(1)见解析(2)4(3)4【详解】(1)解:证明:∵四边形ABCD是矩形,∴CD=AB=4,BC=AD=8,∵点E是CD的中点,点Q是BC的中点,∴BQ=CQ=4,CE=2,∴AB=CQ,∵PQ=2,∴BP=2,∴BP=CE,又∵∠B=∠C=90°,∴△ABP≌△QCE(SAS),∴AP=QE;(2)如图②,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°,∴∠CEQ=45°,设BP=x,则CQ=BC-BP-PQ=8-x-2=6-x,在△CQE中,∵∠QCE=90°,∠CEQ=45°,∴CQ=EC,∴6-x=2,解得x=4,∴BP=4;(3)如图③,作点P关于AD的对称点F,作点Q关于CD的对称点H,连接FH,交AD于M,交CD于N,连接PM,QN,此时四边形PQNM的周长最小,连接FP交AD于T,∴PT=FT=4,QC=BC-BP-PQ=8-3-2=3=CH,∴PF=8,PH=8,∴PF=PH,又∵∠FPH=90°,∴∠F=∠H=45°,∵PF⊥AD,CD⊥QH,∴∠F=∠TMF=45°,∠H=∠CNH=45°,∴FT=TM=4,CN=CH=3,∴四边形PQNM的面积=×PF×PH-×PF×TM-×QH×CN=×8×8-×8×4-×6×3=7.【变式训练1】如图,在周长为的菱形中,,,若为对角线上一动点,则的最小值为______.【答案】3【详解】解:作点关于的对称点,则,连接交于点..由两点之间线段最短可知:当、、在一条直线上时,的值最小,此时.四边形为菱形,周长为,,,,,,四边形是平行四边形,.的最小值为.故答案为:.【变式训练2】如图,点P是内任意一点,,点M和点N分别是射线和射线上的动点,,则周长的最小值是______.【答案】【详解】解:分别作点P关于的对称点C、D,连接,分别交于点M、N,连接.∵点P关于的对称点为C,关于的对称点为D,∴;∵点P关于的对称点为D,∴,∴,,∴是等边三角形,∴.∴的周长的最小值.故答案为:.【变式训练3】如图,直线与轴,轴分别交于和,点、分别为线段、的中点,为上一动点,当的值最小时,点的坐标为 ___________.【答案】【详解】解:作点关于轴的对称点,连接交x轴于点,此时值最小,最小值为,如图.令中,则,∴点的坐标为;令中,则,解得:,∴点的坐标为.∵点、分别为线段、的中点,∴点,点.∵点和点关于轴对称,∴点的坐标为.设直线的解析式为,∵直线过点,,∴,解得,∴直线的解析式为.令,则,解得:,∴点P的坐标为.故答案为:.类型二、胡不归模型背景故事:从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.模型建立:将这个问题数学化,我们不妨设总时间为,则,由可得,提取一个得,若想总的时间最少,就要使得最小,例1.如图,在中,,,,若是边上的动点,则的最小值( )A. B. C. D.【答案】B【详解】如图所示,作点A关于BC的对称点A',连接AA', A'D,过D作DE⊥AC于E∵∠BAC = 90o,∠B = 60o,AB= 2∴BH=1,AH=,AA'=2,∠C= 30o,∴DE =CD,即2DE = CD∵A与A'关于BC对称,∴AD= A'D,∴AD+ DE = A'D+ DE∴当A',D, E在同一直线上时AD + DE的最小值等于A' E的长,在Rt△AA' E中:A' E= AA'=×2= 3∴AD十DE的最小值为3,∴2AD十CD的最小值为6故选B例2.如图,在平面直角坐标系中,一次函数分别交x轴、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为__________.【答案】6【详解】解:∵一次函数分别交x轴、y轴于A、B两点,∴点A(3,0),点,∴AO=3,,∴,作点B关于OA的对称点,连接 ,,过点C作CH⊥AB于H,如图所示:∴,∴,∴,∴是等边三角形,∵,∴,∵CH⊥AB,∴,∴,∴当点,点C,点H三点共线时,有最小值,即2BC+AC有最小值,此时,,是等边三角形,∴,,∴,∴2BC+AC的最小值为6.故答案为:6.【变式训练1】如图,在平面直角坐标系中,直线l分别交x、y轴于B、C两点,点A、C的坐标分别为(3,0)、(0,﹣3),且∠OCB=60°,点P是直线l上一动点,连接AP,则的最小值是______.【答案】【详解】解:∵点A、C的坐标分别为(3,0)、(0,﹣3),∴OA=3,OC=3,作∠OCE=120°,∵∠OCB=60°,则∠OCB=∠BCE=∠FCE=60°,过点P作PG⊥CE于点G,如图:在Rt△PCG中,∠PCG=60°,则∠CPG=30°,∴CG=PC,由勾股定理得PG=PC,∴AP+PC= AP+PG,当A、P、G在同一直线时,AP+PG= AG的值最小,延长AG交y轴于点F,∵∠FCG=60°,∠CGF=90°,∴∠CFG=30°,∴CF=2CG,GF=CF,在Rt△OAF中,∠AOF=90°,∠OFA=30°,∴AF=2OA=6,OF=,∴CF=OF-OC=,∴GF=()=,∴AG=AF-FG=,即AP+PC的最小值为.故答案为:.【变式训练2】如图,直线y=x﹣3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则PC+PB的最小值为___.【答案】4【解析】如图所示,过P作PD⊥AB于D,∵直线y=x﹣3分别交x轴、y轴于B、A两点,令x=0,则y=﹣3;令y=0,则x=3,∴A(0,﹣3),B(3,0),∴AO=BO=3,又∵∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAO=∠ABO=45°=∠BPD,∴△BDP是等腰直角三角形,∴PDPB,∴PC+PB(PCPB)(PC+PD),当C,P,D在同一直线上,即CD⊥AB时,PC+PD的值最小,最小值等于垂线段CD的长,此时,△ACD是等腰直角三角形,又∵点C(0,1)在y轴上,∴AC=1+3=4,∴CDAC=2,即PC+PD的最小值为,∴PC+PB的最小值为4,故答案为:4.【变式训练3】如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 _____.【答案】4【详解】解:如图,在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,此时PA+2PB最小,∴∠AFB=90°∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=,∴∠EAD=∠CAE+∠CAD=30°,∴PF=,∴PA+2PB=2==2BF,在Rt△ABF中,AB=4,∠BAF=∠BAC+∠CAE=45°,∴BF=4,∴(PA+2PB)最大=2BF=,故答案为:.【变式训练4】如图,在平面直角坐标系中,直线l1:y=x+和直线l2:y=﹣x+b相交于y轴上的点B,且分别交x轴于点A和点C.(1)求△ABC的面积;(2)点E坐标为(5,0),点F为直线l1上一个动点,点P为y轴上一个动点,求当EF+CF最小时,点F的坐标,并求出此时PF+OP的最小值.【答案】(1)S△ABC=;(2)点F坐标为(1,);PF+OP的最小值为.【详解】(1)∵l1:y=x+,∴当x=0时,y=,当y=0时,x=-3,∴A(-3,0),B(0,),∵点B直线l2:y=﹣x+b上,∴b=,∴直线l2的解析式为y=﹣x+,∴当y=0时,x=1,∴C(1,0),∴AC=4,OB=,∴S△ABC===.(2)如图,作点C关于直线l1的对称点C′,连接C′E,交l1于F,∵A(-3,0),B(0,),C(1,0),∴AB2=(-3)2+()2=12,BC2=12+()2=4,AC2=42=16,∵AC2=AB2+BC2,∴△ABC是直角三角形,∴点C′在直线l2上,∵点C与点C′关于直线l1的对称,∴CC′=2BC=4,设点C′(m,﹣m+,)∴(m-1)2+(﹣m+)2=42,解得:m1=-1,m2=3,∵点C′在第二象限,∴m=-1,∴﹣m+=,∵FC=FC′,∴EF+CF=EF+FC′,∴当C′、F、E三点共线时EF+CF的值最小,设直线C′E的解析式为y=kx+b,∴,解得:,∴直线C′E的解析式为,联立直线C′E与l1解析式得,解得:,∴F(1,).如图,作二、四象限对角线l3,过点F作FG⊥l3于G,交y轴于P,过点F作FQ⊥x轴,交l3于Q,∴直线l3的解析式为y=-x,∠GOP=45°,∴△GOP是等腰直角三角形,∴PG=OP,∴G、P、F三点共线时,PF+OP的值最小,最小值为FG的长,∵∠GOP=45°,∠POE=90°,∴∠EOQ=45°,∴∠FQO=45°,∴△FGQ是等腰直角三角形,∴FG=FQ,∵F(1,),直线l3的解析式为y=-x,∴Q(1,-1),∴FQ=-(-1)=+1,∴FG=FQ=×(+1)=,∴PF+OP的最小值为.类型三、瓜豆模型问题1:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是? 解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.问题2:如图,点C为定点,点P、Q为动点,CP=CQ,且∠PCQ为定值,当点P在直线AB上运动,Q的运动轨迹是? 解析:当CP与CQ夹角固定,且AP=AQ时,P、Q轨迹是同一种图形,且PP1=QQ1理由:易知△CPP1≌△CPP1,则∠CPP1=CQQ1,故可知Q点轨迹为一条直线.模型总结:条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量.结论:① 主动点、从动点的运动轨迹是同样的图形;② 主动点路径做在直线与从动点路径所在直线的夹角等于定角③ 当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;例1.如图,等边三角形ABC中,AB=4,高线AH=2,D是线段AH上一动点,以BD为边向下作等边三角形BDE,当点D从点A运动到点H的过程中,点E所经过的路径为线段CM,则线段CM的长为_______,当点D运动到点H,此时线段BE的长为__________.【答案】 【详解】解:如图,连接EC. ∵△ABC,△BDE都是等边三角形, ∴BA=BC,BD=BE,∠ABC=∠DBE=60°, ∴∠ABD=∠CBE, 在△ABD和△CBE中,, ∴△ABD≌△CBE(SAS), ∴AD=EC, ∵点D从点A运动到点H, ∴点E的运动路径的长为,当重合,而(即)为等边三角形, 故答案为:.例2.如图,正方形的边长为4,为上一点,且,为边上的一个动点,连接,以为边向右侧作等边,连接,则的最小值为_____.【答案】【详解】由题意可知,点是主动点,点是从动点,点在线段上运动,点也一定在直线轨迹上运动将绕点旋转,使与重合,得到,从而可知为等边三角形,点在垂直于的直线上,作,则即为的最小值,作,可知四边形为矩形,则.故答案为.例3.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______.【答案】.【详解】解:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′==,故答案为.【变式训练1】如图所示,在中,,点是上一点,以为一边向右下方作等边,当由点运动到点时,求点运动的路径长.【答案】点运动的路径长为.【详解】点为定点,可以看作是绕点顺时针旋转60°而来,点运动的路径长等于点运动的路径长,即为的长,,,.点运动的路径长为.【变式训练2】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为( )A. B. C.1 D.2【答案】C【详解】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1,故选C.【变式训练3】如图所示,为等腰直角三角形,,直角顶点在第二象限,点在轴上移动,以为斜边向上作等腰直角,我们发现直角顶点点随着点的移动也在一条直线上移动,求这条直线的函数解析式.【答案】直线的函数解析式为.【详解】如图所示.当与轴平行时,过点作轴于点,过点作轴于点,交于点, 是等腰直角三角形,点的坐标是,,,又是等腰直角三角形,,,点的坐标为.当与原点重合时,在轴上,此时,即,设所求直线解析式为:,将、代入得解直线的函数解析式为.课后训练1.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为( )A. B. C. D.【答案】B【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(,),则PM=,QM=,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N,在△PQM和△Q′PN中,,∴△PQM≌△Q′PN(AAS),∴PN=QM=,Q′N=PM=,∴ON=1+PN=,∴Q′(,),∴OQ′2=()2+()2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,故选:B.2.如图,等边中,,点E为高上的一动点,以为边作等边,连接,,则______________,的最小值为______________.【答案】 【详解】解:①∵为等边三角形,∴,,∴,∵是等边三角形,∵,,∴,,∴,在和中∴,得;故答案为:.②(将军饮马问题)过点D作定直线CF的对称点G,连CG,∴为等边三角形,为的中垂线,,∴,连接,∴,又,∴为直角三角形,∵,,∴,∴的最小值为.故答案为:.3.如图,▱中,,,为边上一点,则的最小值为______.【答案】【详解】如图,过点作,交的延长线于,四边形是平行四边形,,∴∵PH丄AD∴∴,,∴ 当点,点,点三点共线时,HP+PB有最小值,即有最小值,此时 ,,,∴ , 则最小值为,故答案为:.4.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,,点F是线段AD上的动点,则的最小值为______.【答案】6【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD=6,即BF+EF=6.故答案为:6.5.如图,在平面直角坐标系中,直线l平行于x轴,l上有两点A、B,且点A坐标为(-14,8),点B位于A点右侧,两点相距8个单位,动点P、Q分别从A、B出发,沿直线l向右运动,点P速度为2个单位/秒,点Q速度为6个单位/秒,设运动时间为t秒.(1)用含t的代数式表示P、Q的坐标:P( _________ ),Q( _________ );(2)在P、Q运动过程中,取线段PQ的中点D,当OBD为直角三角形时,求出t的值及相应的点D的坐标;(3)取满足(2)中条件最右侧的D点,若坐标系中存在另一点E(,-4),请问x轴上是否存在一点F,使FD-FE的值最大,若存在,求出最大值;若不存在,说明理由.【答案】(1)-14+2t,8;-6+6t,8;(2)当OBD为直角三角形时,,点D的坐标为(0,8)或者,点D的坐标为(,8);(3)x轴上存在一点F,使FD-FE的值最大,最大值为【详解】解:(1)∵点A坐标为( -14,8),点B位于A点右侧,两点相距8个单位,∴点B的坐标为(-6,8),∵动点P、Q分别从A、B出发,沿直线l向右运动,点P速度为2个单位/秒,点Q速度为6个单位/秒,设运动时间为t秒,∴点P、Q的坐标分别为P( -14+2t,8),Q(-6+6t,8),故答案为:-14+2t,8;-6+6t,8;(2)由(1)可得:点P、Q的坐标分别为P( -14+2t,8),Q(-6+6t,8),∴线段PQ的中点D的坐标为(,8),即D(,8),∵点D在直线l上,∴∠OBD不可能是直角∴如图,当∠BDO=90°时,点D位于点D1处,此时点D的坐标为(0,8),则,解得:;当∠BOD=90°时,点D位于点D2处,则,∵点O(0,0),B(-6,8),D(,8),∴,解得:,∴,此时点D的坐标为(,8),综上所述:当OBD为直角三角形时,,点D的坐标为(0,8)或者,点D的坐标为(,8);(3)如图,作点E关于x轴的对称点E1,连接DE1并延长,交x轴于点F,连接EF,∵点E与点E1关于x轴对称,点F在x轴上,∴FE=FE1,∴当点F、D、E1在同一直线上时,则FD-FE=FD-FE1=DE1,当点F、D、E1不在同一直线上时,则FD-FE=FD-FE1<DE1,∴当点F、D、E1在同一直线上时,FD-FE=取得最大值,最大值为线段DE1的长,∵点E与点E1关于x轴对称,点E(,-4),∴点E1(,4),又∵点D的坐标为(,8),∴,∴x轴上存在一点F,使FD-FE的值最大,最大值为.6.如图所示,在矩形中,,,为的中点,为上一动点,为的中点,连接,求的最小值.【答案】的最小值为.【详解】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE.当点F在EC上除点C、E的位置处时,有DP=FP.由中位线定理可知:P1P∥CE且P1P=CF.∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=2,∴BP1=∴PB的最小值是.故答案是:.7.如图1,已知正方形ABCD,AB=4,以顶点B为直角顶点的等腰Rt△BEF绕点B旋转,BE=BF=,连接AE,CF.(1)求证:△ABE≌△CBF.(2)如图2,连接DE,当DE=BE时,求S△BCF的值.(S△BCF表示△BCF的面积)(3)如图3,当Rt△BEF旋转到正方形ABCD外部,且线段AE与线段CF存在交点G时,若M是CD的中点,P是线段DG上的一个动点,当满足MP+PG的值最小时,求MP的值.【答案】(1)见解析(2)2或6(3)【解析】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵∠EBF=90°=∠ABC,∴∠ABE=∠CBF,又∵BE=BF,AB=BC,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);(2)解:如图2,过点E作EH⊥AB于H,∵△ABE≌△CBF,∴S△ABE=S△CBF,∵AD=AB,AE=AE,DE=BE,∴△ADE≌△ABE(SSS),∴∠DAE=∠BAE=45°,∵EH⊥AB,∴∠EAB=∠AEH=45°,∴AH=EH,∵BE2=BH2+EH2,∴10=EH2+(4﹣EH)2,∴EH=1或3,当EH=1时∴S△ABE=S△BCF=AB×EH=×4×1=2,当EH=3时∴S△ABE=S△BCF=AB×EH=×4×3=6,∴S△BCF的值是2或6;(3)解:如图3,过点P作PK⊥AE于K,由(1)同理可得△ABE≌△CBF,∴∠EAB=∠BCF,∵∠BAE+∠CAE+∠ACB=90°,∴∠BCF+∠CAE+∠ACB=90°,∴∠AGC=90°,∵∠AGC=∠ADC=90°,∴点A,点G,点C,点D四点共圆,∴∠ACD=∠AGD=45°,∵PK⊥AG,∴∠PGK=∠GPK=45°,∴PK=GK=PG,∴MP+PG=MP+PK,∴当点M,点P,点K三点共线时,且点E,点G重合时,MP+PG值最小,即MP+PG最小,如图4,过点B作BQ⊥CF于Q,∵BE=BF=,∠EBF=90°,BQ⊥EF,∴EF=2,BQ=EQ=FQ=,∵CQ=,∴CE=CQ﹣EQ=,∵MK⊥AE,CE⊥AE,∴MK∥CE,∴,又∵M是CD的中点,∴DC=2DM,∴MP=CE=.
专题02 三角形中的三种几何最值模型类型一、将军饮马模型①一动两定 ②两动一定 例1.如图,O为矩形ABCD对角线AC,BD的交点,AB=8,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是____________.例2.如图,平面直角坐标系中,点是直线上一动点,将点向右平移1个单位得到点,点,则的最小值为________.例3.在长方形ABCD中,AB=4,BC=8,点P、Q为BC边上的两个动点(点P位于点Q的左侧,P、Q均不与顶点重合),PQ=2(1)如图①,若点E为CD边上的中点,当Q移动到BC边上的中点时,求证:AP=QE;(2)如图②,若点E为CD边上的中点,在PQ的移动过程中,若四边形APQE的周长最小时,求BP的长;(3)如图③,若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合),当BP=3,且四边形PQNM的周长最小时,求此时四边形PQNM的面积.【变式训练1】如图,在周长为的菱形中,,,若为对角线上一动点,则的最小值为______.【变式训练2】如图,点P是内任意一点,,点M和点N分别是射线和射线上的动点,,则周长的最小值是______.【变式训练3】如图,直线与轴,轴分别交于和,点、分别为线段、的中点,为上一动点,当的值最小时,点的坐标为 ___________.类型二、胡不归模型背景故事:从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.模型建立:将这个问题数学化,我们不妨设总时间为,则,由可得,提取一个得,若想总的时间最少,就要使得最小,例1.如图,在中,,,,若是边上的动点,则的最小值( )A. B. C. D.例2.如图,在平面直角坐标系中,一次函数分别交x轴、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为__________.【变式训练1】如图,在平面直角坐标系中,直线l分别交x、y轴于B、C两点,点A、C的坐标分别为(3,0)、(0,﹣3),且∠OCB=60°,点P是直线l上一动点,连接AP,则的最小值是______.【变式训练2】如图,直线y=x﹣3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则PC+PB的最小值为___.【变式训练3】如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 _____.【变式训练4】如图,在平面直角坐标系中,直线l1:y=x+和直线l2:y=﹣x+b相交于y轴上的点B,且分别交x轴于点A和点C.(1)求△ABC的面积;(2)点E坐标为(5,0),点F为直线l1上一个动点,点P为y轴上一个动点,求当EF+CF最小时,点F的坐标,并求出此时PF+OP的最小值.类型三、瓜豆模型问题1:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是? 解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.问题2:如图,点C为定点,点P、Q为动点,CP=CQ,且∠PCQ为定值,当点P在直线AB上运动,Q的运动轨迹是? 解析:当CP与CQ夹角固定,且AP=AQ时,P、Q轨迹是同一种图形,且PP1=QQ1理由:易知△CPP1≌△CPP1,则∠CPP1=CQQ1,故可知Q点轨迹为一条直线.模型总结:条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量.结论:① 主动点、从动点的运动轨迹是同样的图形;② 主动点路径做在直线与从动点路径所在直线的夹角等于定角③ 当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;例1.如图,等边三角形ABC中,AB=4,高线AH=2,D是线段AH上一动点,以BD为边向下作等边三角形BDE,当点D从点A运动到点H的过程中,点E所经过的路径为线段CM,则线段CM的长为_______,当点D运动到点H,此时线段BE的长为__________.例2.如图,正方形的边长为4,为上一点,且,为边上的一个动点,连接,以为边向右侧作等边,连接,则的最小值为_____.例3.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______.【变式训练1】如图所示,在中,,点是上一点,以为一边向右下方作等边,当由点运动到点时,求点运动的路径长.【变式训练2】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为( )A. B. C.1 D.2【变式训练3】如图所示,为等腰直角三角形,,直角顶点在第二象限,点在轴上移动,以为斜边向上作等腰直角,我们发现直角顶点点随着点的移动也在一条直线上移动,求这条直线的函数解析式.课后训练1.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为( )A. B. C. D.2.如图,等边中,,点E为高上的一动点,以为边作等边,连接,,则______________,的最小值为______________.3.如图,▱中,,,为边上一点,则的最小值为______.4.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,,点F是线段AD上的动点,则的最小值为______.5.如图,在平面直角坐标系中,直线l平行于x轴,l上有两点A、B,且点A坐标为(-14,8),点B位于A点右侧,两点相距8个单位,动点P、Q分别从A、B出发,沿直线l向右运动,点P速度为2个单位/秒,点Q速度为6个单位/秒,设运动时间为t秒.(1)用含t的代数式表示P、Q的坐标:P( _________ ),Q( _________ );(2)在P、Q运动过程中,取线段PQ的中点D,当OBD为直角三角形时,求出t的值及相应的点D的坐标;(3)取满足(2)中条件最右侧的D点,若坐标系中存在另一点E(,-4),请问x轴上是否存在一点F,使FD-FE的值最大,若存在,求出最大值;若不存在,说明理由.6.如图所示,在矩形中,,,为的中点,为上一动点,为的中点,连接,求的最小值.7.如图1,已知正方形ABCD,AB=4,以顶点B为直角顶点的等腰Rt△BEF绕点B旋转,BE=BF=,连接AE,CF.(1)求证:△ABE≌△CBF.(2)如图2,连接DE,当DE=BE时,求S△BCF的值.(S△BCF表示△BCF的面积)(3)如图3,当Rt△BEF旋转到正方形ABCD外部,且线段AE与线段CF存在交点G时,若M是CD的中点,P是线段DG上的一个动点,当满足MP+PG的值最小时,求MP的值.专题02 三角形中的三种几何最值模型类型一、将军饮马模型①一动两定 ②两动一定 例1.如图,O为矩形ABCD对角线AC,BD的交点,AB=8,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是____________.【答案】【详解】解:过O作OH∥BC,且令OH=2,连接NH,作O点关于BC的对称点K,连接OK,KH,∵OH∥BC,OH=MN=2,∴四边形OMNH是平行四边形,∴OM=NH,∴OM+ON= NH+ON.∵O点关于BC的对称点是点K,∴ON=NK,∴OM+ON= NH+ON= NH+ NK,∵,∴当H、N、K三点共线的时候,OM+ON有最小值,最小值为HK的长.∵OH∥BC,O点关于BC的对称点是点K,∴. ∵O为矩形ABCD对角线AC,BD的交点,O点关于BC的对称点是点K,∴OK=AB=8.∵OH= 2,,∴,∴OM+ON的最小值是.例2.如图,平面直角坐标系中,点是直线上一动点,将点向右平移1个单位得到点,点,则的最小值为________.【答案】【详解】解:设D(-1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,ED,作ES⊥x轴于S,∵AB∥DC,且AB=OD=OC=1,∴四边形ABOD和四边形ABCO是平行四边形,∴AD=OB,OA=BC,∴AD+OA=OB+BC,∵AE=AD,∴AE+OA=OB+BC,即OE=OB+BC,∴OB+CB的最小值为OE,由可知∠AFO=30°,F(-4,0),∴FD=3,∠FDG=60°,∴DG=DF=,∴DE=2DG=3,∴ES=DE=,DS=DE=,∴OS=,∴OE=,∴OB+CB的最小值为.例3.在长方形ABCD中,AB=4,BC=8,点P、Q为BC边上的两个动点(点P位于点Q的左侧,P、Q均不与顶点重合),PQ=2(1)如图①,若点E为CD边上的中点,当Q移动到BC边上的中点时,求证:AP=QE;(2)如图②,若点E为CD边上的中点,在PQ的移动过程中,若四边形APQE的周长最小时,求BP的长;(3)如图③,若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合),当BP=3,且四边形PQNM的周长最小时,求此时四边形PQNM的面积.【答案】(1)见解析(2)4(3)4【详解】(1)解:证明:∵四边形ABCD是矩形,∴CD=AB=4,BC=AD=8,∵点E是CD的中点,点Q是BC的中点,∴BQ=CQ=4,CE=2,∴AB=CQ,∵PQ=2,∴BP=2,∴BP=CE,又∵∠B=∠C=90°,∴△ABP≌△QCE(SAS),∴AP=QE;(2)如图②,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°,∴∠CEQ=45°,设BP=x,则CQ=BC-BP-PQ=8-x-2=6-x,在△CQE中,∵∠QCE=90°,∠CEQ=45°,∴CQ=EC,∴6-x=2,解得x=4,∴BP=4;(3)如图③,作点P关于AD的对称点F,作点Q关于CD的对称点H,连接FH,交AD于M,交CD于N,连接PM,QN,此时四边形PQNM的周长最小,连接FP交AD于T,∴PT=FT=4,QC=BC-BP-PQ=8-3-2=3=CH,∴PF=8,PH=8,∴PF=PH,又∵∠FPH=90°,∴∠F=∠H=45°,∵PF⊥AD,CD⊥QH,∴∠F=∠TMF=45°,∠H=∠CNH=45°,∴FT=TM=4,CN=CH=3,∴四边形PQNM的面积=×PF×PH-×PF×TM-×QH×CN=×8×8-×8×4-×6×3=7.【变式训练1】如图,在周长为的菱形中,,,若为对角线上一动点,则的最小值为______.【答案】3【详解】解:作点关于的对称点,则,连接交于点..由两点之间线段最短可知:当、、在一条直线上时,的值最小,此时.四边形为菱形,周长为,,,,,,四边形是平行四边形,.的最小值为.故答案为:.【变式训练2】如图,点P是内任意一点,,点M和点N分别是射线和射线上的动点,,则周长的最小值是______.【答案】【详解】解:分别作点P关于的对称点C、D,连接,分别交于点M、N,连接.∵点P关于的对称点为C,关于的对称点为D,∴;∵点P关于的对称点为D,∴,∴,,∴是等边三角形,∴.∴的周长的最小值.故答案为:.【变式训练3】如图,直线与轴,轴分别交于和,点、分别为线段、的中点,为上一动点,当的值最小时,点的坐标为 ___________.【答案】【详解】解:作点关于轴的对称点,连接交x轴于点,此时值最小,最小值为,如图.令中,则,∴点的坐标为;令中,则,解得:,∴点的坐标为.∵点、分别为线段、的中点,∴点,点.∵点和点关于轴对称,∴点的坐标为.设直线的解析式为,∵直线过点,,∴,解得,∴直线的解析式为.令,则,解得:,∴点P的坐标为.故答案为:.类型二、胡不归模型背景故事:从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.模型建立:将这个问题数学化,我们不妨设总时间为,则,由可得,提取一个得,若想总的时间最少,就要使得最小,例1.如图,在中,,,,若是边上的动点,则的最小值( )A. B. C. D.【答案】B【详解】如图所示,作点A关于BC的对称点A',连接AA', A'D,过D作DE⊥AC于E∵∠BAC = 90o,∠B = 60o,AB= 2∴BH=1,AH=,AA'=2,∠C= 30o,∴DE =CD,即2DE = CD∵A与A'关于BC对称,∴AD= A'D,∴AD+ DE = A'D+ DE∴当A',D, E在同一直线上时AD + DE的最小值等于A' E的长,在Rt△AA' E中:A' E= AA'=×2= 3∴AD十DE的最小值为3,∴2AD十CD的最小值为6故选B例2.如图,在平面直角坐标系中,一次函数分别交x轴、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为__________.【答案】6【详解】解:∵一次函数分别交x轴、y轴于A、B两点,∴点A(3,0),点,∴AO=3,,∴,作点B关于OA的对称点,连接 ,,过点C作CH⊥AB于H,如图所示:∴,∴,∴,∴是等边三角形,∵,∴,∵CH⊥AB,∴,∴,∴当点,点C,点H三点共线时,有最小值,即2BC+AC有最小值,此时,,是等边三角形,∴,,∴,∴2BC+AC的最小值为6.故答案为:6.【变式训练1】如图,在平面直角坐标系中,直线l分别交x、y轴于B、C两点,点A、C的坐标分别为(3,0)、(0,﹣3),且∠OCB=60°,点P是直线l上一动点,连接AP,则的最小值是______.【答案】【详解】解:∵点A、C的坐标分别为(3,0)、(0,﹣3),∴OA=3,OC=3,作∠OCE=120°,∵∠OCB=60°,则∠OCB=∠BCE=∠FCE=60°,过点P作PG⊥CE于点G,如图:在Rt△PCG中,∠PCG=60°,则∠CPG=30°,∴CG=PC,由勾股定理得PG=PC,∴AP+PC= AP+PG,当A、P、G在同一直线时,AP+PG= AG的值最小,延长AG交y轴于点F,∵∠FCG=60°,∠CGF=90°,∴∠CFG=30°,∴CF=2CG,GF=CF,在Rt△OAF中,∠AOF=90°,∠OFA=30°,∴AF=2OA=6,OF=,∴CF=OF-OC=,∴GF=()=,∴AG=AF-FG=,即AP+PC的最小值为.故答案为:.【变式训练2】如图,直线y=x﹣3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则PC+PB的最小值为___.【答案】4【解析】如图所示,过P作PD⊥AB于D,∵直线y=x﹣3分别交x轴、y轴于B、A两点,令x=0,则y=﹣3;令y=0,则x=3,∴A(0,﹣3),B(3,0),∴AO=BO=3,又∵∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAO=∠ABO=45°=∠BPD,∴△BDP是等腰直角三角形,∴PDPB,∴PC+PB(PCPB)(PC+PD),当C,P,D在同一直线上,即CD⊥AB时,PC+PD的值最小,最小值等于垂线段CD的长,此时,△ACD是等腰直角三角形,又∵点C(0,1)在y轴上,∴AC=1+3=4,∴CDAC=2,即PC+PD的最小值为,∴PC+PB的最小值为4,故答案为:4.【变式训练3】如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 _____.【答案】4【详解】解:如图,在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,此时PA+2PB最小,∴∠AFB=90°∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=,∴∠EAD=∠CAE+∠CAD=30°,∴PF=,∴PA+2PB=2==2BF,在Rt△ABF中,AB=4,∠BAF=∠BAC+∠CAE=45°,∴BF=4,∴(PA+2PB)最大=2BF=,故答案为:.【变式训练4】如图,在平面直角坐标系中,直线l1:y=x+和直线l2:y=﹣x+b相交于y轴上的点B,且分别交x轴于点A和点C.(1)求△ABC的面积;(2)点E坐标为(5,0),点F为直线l1上一个动点,点P为y轴上一个动点,求当EF+CF最小时,点F的坐标,并求出此时PF+OP的最小值.【答案】(1)S△ABC=;(2)点F坐标为(1,);PF+OP的最小值为.【详解】(1)∵l1:y=x+,∴当x=0时,y=,当y=0时,x=-3,∴A(-3,0),B(0,),∵点B直线l2:y=﹣x+b上,∴b=,∴直线l2的解析式为y=﹣x+,∴当y=0时,x=1,∴C(1,0),∴AC=4,OB=,∴S△ABC===.(2)如图,作点C关于直线l1的对称点C′,连接C′E,交l1于F,∵A(-3,0),B(0,),C(1,0),∴AB2=(-3)2+()2=12,BC2=12+()2=4,AC2=42=16,∵AC2=AB2+BC2,∴△ABC是直角三角形,∴点C′在直线l2上,∵点C与点C′关于直线l1的对称,∴CC′=2BC=4,设点C′(m,﹣m+,)∴(m-1)2+(﹣m+)2=42,解得:m1=-1,m2=3,∵点C′在第二象限,∴m=-1,∴﹣m+=,∵FC=FC′,∴EF+CF=EF+FC′,∴当C′、F、E三点共线时EF+CF的值最小,设直线C′E的解析式为y=kx+b,∴,解得:,∴直线C′E的解析式为,联立直线C′E与l1解析式得,解得:,∴F(1,).如图,作二、四象限对角线l3,过点F作FG⊥l3于G,交y轴于P,过点F作FQ⊥x轴,交l3于Q,∴直线l3的解析式为y=-x,∠GOP=45°,∴△GOP是等腰直角三角形,∴PG=OP,∴G、P、F三点共线时,PF+OP的值最小,最小值为FG的长,∵∠GOP=45°,∠POE=90°,∴∠EOQ=45°,∴∠FQO=45°,∴△FGQ是等腰直角三角形,∴FG=FQ,∵F(1,),直线l3的解析式为y=-x,∴Q(1,-1),∴FQ=-(-1)=+1,∴FG=FQ=×(+1)=,∴PF+OP的最小值为.类型三、瓜豆模型问题1:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是? 解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.问题2:如图,点C为定点,点P、Q为动点,CP=CQ,且∠PCQ为定值,当点P在直线AB上运动,Q的运动轨迹是? 解析:当CP与CQ夹角固定,且AP=AQ时,P、Q轨迹是同一种图形,且PP1=QQ1理由:易知△CPP1≌△CPP1,则∠CPP1=CQQ1,故可知Q点轨迹为一条直线.模型总结:条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量.结论:① 主动点、从动点的运动轨迹是同样的图形;② 主动点路径做在直线与从动点路径所在直线的夹角等于定角③ 当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;例1.如图,等边三角形ABC中,AB=4,高线AH=2,D是线段AH上一动点,以BD为边向下作等边三角形BDE,当点D从点A运动到点H的过程中,点E所经过的路径为线段CM,则线段CM的长为_______,当点D运动到点H,此时线段BE的长为__________.【答案】 【详解】解:如图,连接EC. ∵△ABC,△BDE都是等边三角形, ∴BA=BC,BD=BE,∠ABC=∠DBE=60°, ∴∠ABD=∠CBE, 在△ABD和△CBE中,, ∴△ABD≌△CBE(SAS), ∴AD=EC, ∵点D从点A运动到点H, ∴点E的运动路径的长为,当重合,而(即)为等边三角形, 故答案为:.例2.如图,正方形的边长为4,为上一点,且,为边上的一个动点,连接,以为边向右侧作等边,连接,则的最小值为_____.【答案】【详解】由题意可知,点是主动点,点是从动点,点在线段上运动,点也一定在直线轨迹上运动将绕点旋转,使与重合,得到,从而可知为等边三角形,点在垂直于的直线上,作,则即为的最小值,作,可知四边形为矩形,则.故答案为.例3.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______.【答案】.【详解】解:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′==,故答案为.【变式训练1】如图所示,在中,,点是上一点,以为一边向右下方作等边,当由点运动到点时,求点运动的路径长.【答案】点运动的路径长为.【详解】点为定点,可以看作是绕点顺时针旋转60°而来,点运动的路径长等于点运动的路径长,即为的长,,,.点运动的路径长为.【变式训练2】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为( )A. B. C.1 D.2【答案】C【详解】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1,故选C.【变式训练3】如图所示,为等腰直角三角形,,直角顶点在第二象限,点在轴上移动,以为斜边向上作等腰直角,我们发现直角顶点点随着点的移动也在一条直线上移动,求这条直线的函数解析式.【答案】直线的函数解析式为.【详解】如图所示.当与轴平行时,过点作轴于点,过点作轴于点,交于点, 是等腰直角三角形,点的坐标是,,,又是等腰直角三角形,,,点的坐标为.当与原点重合时,在轴上,此时,即,设所求直线解析式为:,将、代入得解直线的函数解析式为.课后训练1.如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为( )A. B. C. D.【答案】B【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(,),则PM=,QM=,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N,在△PQM和△Q′PN中,,∴△PQM≌△Q′PN(AAS),∴PN=QM=,Q′N=PM=,∴ON=1+PN=,∴Q′(,),∴OQ′2=()2+()2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,故选:B.2.如图,等边中,,点E为高上的一动点,以为边作等边,连接,,则______________,的最小值为______________.【答案】 【详解】解:①∵为等边三角形,∴,,∴,∵是等边三角形,∵,,∴,,∴,在和中∴,得;故答案为:.②(将军饮马问题)过点D作定直线CF的对称点G,连CG,∴为等边三角形,为的中垂线,,∴,连接,∴,又,∴为直角三角形,∵,,∴,∴的最小值为.故答案为:.3.如图,▱中,,,为边上一点,则的最小值为______.【答案】【详解】如图,过点作,交的延长线于,四边形是平行四边形,,∴∵PH丄AD∴∴,,∴ 当点,点,点三点共线时,HP+PB有最小值,即有最小值,此时 ,,,∴ , 则最小值为,故答案为:.4.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,,点F是线段AD上的动点,则的最小值为______.【答案】6【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD=6,即BF+EF=6.故答案为:6.5.如图,在平面直角坐标系中,直线l平行于x轴,l上有两点A、B,且点A坐标为(-14,8),点B位于A点右侧,两点相距8个单位,动点P、Q分别从A、B出发,沿直线l向右运动,点P速度为2个单位/秒,点Q速度为6个单位/秒,设运动时间为t秒.(1)用含t的代数式表示P、Q的坐标:P( _________ ),Q( _________ );(2)在P、Q运动过程中,取线段PQ的中点D,当OBD为直角三角形时,求出t的值及相应的点D的坐标;(3)取满足(2)中条件最右侧的D点,若坐标系中存在另一点E(,-4),请问x轴上是否存在一点F,使FD-FE的值最大,若存在,求出最大值;若不存在,说明理由.【答案】(1)-14+2t,8;-6+6t,8;(2)当OBD为直角三角形时,,点D的坐标为(0,8)或者,点D的坐标为(,8);(3)x轴上存在一点F,使FD-FE的值最大,最大值为【详解】解:(1)∵点A坐标为( -14,8),点B位于A点右侧,两点相距8个单位,∴点B的坐标为(-6,8),∵动点P、Q分别从A、B出发,沿直线l向右运动,点P速度为2个单位/秒,点Q速度为6个单位/秒,设运动时间为t秒,∴点P、Q的坐标分别为P( -14+2t,8),Q(-6+6t,8),故答案为:-14+2t,8;-6+6t,8;(2)由(1)可得:点P、Q的坐标分别为P( -14+2t,8),Q(-6+6t,8),∴线段PQ的中点D的坐标为(,8),即D(,8),∵点D在直线l上,∴∠OBD不可能是直角∴如图,当∠BDO=90°时,点D位于点D1处,此时点D的坐标为(0,8),则,解得:;当∠BOD=90°时,点D位于点D2处,则,∵点O(0,0),B(-6,8),D(,8),∴,解得:,∴,此时点D的坐标为(,8),综上所述:当OBD为直角三角形时,,点D的坐标为(0,8)或者,点D的坐标为(,8);(3)如图,作点E关于x轴的对称点E1,连接DE1并延长,交x轴于点F,连接EF,∵点E与点E1关于x轴对称,点F在x轴上,∴FE=FE1,∴当点F、D、E1在同一直线上时,则FD-FE=FD-FE1=DE1,当点F、D、E1不在同一直线上时,则FD-FE=FD-FE1<DE1,∴当点F、D、E1在同一直线上时,FD-FE=取得最大值,最大值为线段DE1的长,∵点E与点E1关于x轴对称,点E(,-4),∴点E1(,4),又∵点D的坐标为(,8),∴,∴x轴上存在一点F,使FD-FE的值最大,最大值为.6.如图所示,在矩形中,,,为的中点,为上一动点,为的中点,连接,求的最小值.【答案】的最小值为.【详解】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE.当点F在EC上除点C、E的位置处时,有DP=FP.由中位线定理可知:P1P∥CE且P1P=CF.∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=2,∴BP1=∴PB的最小值是.故答案是:.7.如图1,已知正方形ABCD,AB=4,以顶点B为直角顶点的等腰Rt△BEF绕点B旋转,BE=BF=,连接AE,CF.(1)求证:△ABE≌△CBF.(2)如图2,连接DE,当DE=BE时,求S△BCF的值.(S△BCF表示△BCF的面积)(3)如图3,当Rt△BEF旋转到正方形ABCD外部,且线段AE与线段CF存在交点G时,若M是CD的中点,P是线段DG上的一个动点,当满足MP+PG的值最小时,求MP的值.【答案】(1)见解析(2)2或6(3)【解析】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵∠EBF=90°=∠ABC,∴∠ABE=∠CBF,又∵BE=BF,AB=BC,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);(2)解:如图2,过点E作EH⊥AB于H,∵△ABE≌△CBF,∴S△ABE=S△CBF,∵AD=AB,AE=AE,DE=BE,∴△ADE≌△ABE(SSS),∴∠DAE=∠BAE=45°,∵EH⊥AB,∴∠EAB=∠AEH=45°,∴AH=EH,∵BE2=BH2+EH2,∴10=EH2+(4﹣EH)2,∴EH=1或3,当EH=1时∴S△ABE=S△BCF=AB×EH=×4×1=2,当EH=3时∴S△ABE=S△BCF=AB×EH=×4×3=6,∴S△BCF的值是2或6;(3)解:如图3,过点P作PK⊥AE于K,由(1)同理可得△ABE≌△CBF,∴∠EAB=∠BCF,∵∠BAE+∠CAE+∠ACB=90°,∴∠BCF+∠CAE+∠ACB=90°,∴∠AGC=90°,∵∠AGC=∠ADC=90°,∴点A,点G,点C,点D四点共圆,∴∠ACD=∠AGD=45°,∵PK⊥AG,∴∠PGK=∠GPK=45°,∴PK=GK=PG,∴MP+PG=MP+PK,∴当点M,点P,点K三点共线时,且点E,点G重合时,MP+PG值最小,即MP+PG最小,如图4,过点B作BQ⊥CF于Q,∵BE=BF=,∠EBF=90°,BQ⊥EF,∴EF=2,BQ=EQ=FQ=,∵CQ=,∴CE=CQ﹣EQ=,∵MK⊥AE,CE⊥AE,∴MK∥CE,∴,又∵M是CD的中点,∴DC=2DM,∴MP=CE=.
相关资料
更多