|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年北京市重点中学数学九上开学考试试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年北京市重点中学数学九上开学考试试题【含答案】01
    2024-2025学年北京市重点中学数学九上开学考试试题【含答案】02
    2024-2025学年北京市重点中学数学九上开学考试试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年北京市重点中学数学九上开学考试试题【含答案】

    展开
    这是一份2024-2025学年北京市重点中学数学九上开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列运算正确的是( )
    A.B.(m2)3=m5C.a2•a3=a5D.(x+y)2=x2+y2
    2、(4分)下列二次根式中,不是最简二次根式的是( )
    A.B.C.D.
    3、(4分)如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )
    A.该班总人数为50B.步行人数为30
    C.乘车人数是骑车人数的2.5倍D.骑车人数占20%
    4、(4分)在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为,那么袋中总共球的个数为()
    A.15 个B.12 个C.8 个D.6 个
    5、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.等边三角形B.等腰直角三角形
    C.平行四边形D.菱形
    6、(4分)要使代数式有意义,实数的取值范围是( )
    A.B.C.D.
    7、(4分)如图所示,在菱形ABCD中,已知两条对角线AC=24,BD=10,则此菱形的边长是( )
    A.11B.13C.15D.17
    8、(4分)为筹备班级的元旦联欢会,班长对全班同学爱吃哪几种零食作民意调查,从而最终决定买什么零食,下列调查数据中最值得关注的是( )
    A.中位数B.平均数C.众数D.标准差
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知,是一元二次方程的两个实数根,则的值是______.
    10、(4分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为_______________.
    11、(4分)菱形有一个内角是120°,其中一条对角线长为9,则菱形的边长为____________.
    12、(4分)某商场利用“五一”开展促销活动:一次性购买某品牌服装件,每件仅售元,如果超过件,则超过部分可享受折优惠,顾客所付款(元)与所购服装件之间的函数解析式为__________.
    13、(4分)若,是一元二次方程的两个实数根,则__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形中,,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.
    (1)判断的形状,并说明理由;
    (2)若,,试求出四边形的对角线的长.
    15、(8分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点.
    (1)当时,求该抛物线下方(包括边界)的好点个数.
    (2)当时,求该抛物线上的好点坐标.
    (3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
    16、(8分)解方程:(用公式法解).
    17、(10分)如图,在中,,从点为圆心,长为半径画弧交线段于点,以点为圆心长为半径画弧交线段于点,连结.
    (1)若,求的度数:
    (2)设.
    ①请用含的代数式表示与的长;
    ②与的长能同时是方程的根吗?说明理由.
    18、(10分)如图,在平面直角坐标系中,矩形的顶点在轴的正半轴上,顶点在轴的正半轴上,是边上的一点,,.反比例函数在第一象限内的图像经过点,交于点,.
    (1)求这个反比例函数的表达式,
    (2)动点在矩形内,且满足.
    ①若点在这个反比例函数的图像上,求点的坐标,
    ②若点是平面内一点,使得以、、、为顶点的四边形是菱形,求点的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为____.
    20、(4分)若是完全平方式,则的值是__________.
    21、(4分)如图,点、分别是平行四边形的两边、的中点.若的周长是30,则的周长是_________.
    22、(4分)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则CE与EO之间的数量关系是_____.
    23、(4分)如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.
    25、(10分)数学问题:用边长相等的正三角形、正方形和正六边形能否进行平面图形的镶嵌?
    问题探究:为了解决上述数学问题,我们采用分类讨论的思想方法去进行探究.
    探究一:从正三角形、正方形和正六边形中任选一种图形,能否进行平面图形的镶嵌?
    第一类:选正三角形.因为正三角形的每一个内角是60°,所以在镶嵌平面时,围绕某一点有6个正三角形的内角可以拼成一个周角,所以用正三角形可以进行平面图形的镶嵌.
    第二类:选正方形.因为正方形的每一个内角是90°,所以在镶嵌平面时,围绕某一点有4个正方形的内角可以拼成一个周角,所以用正方形也可以进行平面图形的镶嵌.
    第三类:选正六边形.(仿照上述方法,写出探究过程及结论)
    探究二:从正三角形、正方形和正六边形中任选两种图形,能否进行平面图形的镶嵌?
    第四类:选正三角形和正方形
    在镶嵌平面时,设围绕某一点有x个正三角形和y个正方形的内角可以拼成个周角.根据题意,可得方程
    60x+90y=360
    整理,得2x+3y=1.
    我们可以找到唯一组适合方程的正整数解为.
    镶嵌平面时,在一个顶点周围围绕着3个正三角形和2个正方形的内角可以拼成一个周角,所以用正三角形和正方形可以进行平面镶嵌
    第五类:选正三角形和正六边形.(仿照上述方法,写出探究过程及结论)
    第六类:选正方形和正六边形,(不写探究过程,只写出结论)
    探究三:用正三角形、正方形和正六边形三种图形是否可以镶嵌平面?
    第七类:选正三角形、正方形和正六边形三种图形.(不写探究过程,只写结论),
    26、(12分)将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.
    (1)求点G的坐标;
    (2)求直线EF的解析式;
    (3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    A、=3,本选项错误;
    B、(m2)3=m6,本选项错误;
    C、a2•a3=a5,本选项正确;
    D、(x+y)2=x2+y2+2xy,本选项错误,
    故选C
    2、C
    【解析】
    根据最简二次根式的定义对各选项分析判断即可.
    【详解】
    解:A、是最简二次根式,不合题意,故本选项错误;
    B、是最简二次根式,不合题意,故本选项错误;
    C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;
    D、是最简二次根式,不合题意,故本选项错误;
    故选C.
    本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.
    3、B
    【解析】
    根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.
    【详解】
    A、总人数是:25÷50%=50(人),故A正确;
    B、步行的人数是:50×30%=15(人),故B错误;
    C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;
    D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.
    由于该题选择错误的,
    故选B.
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    4、A
    【解析】
    根据红球的概率公式列出方程求解即可.
    【详解】
    解:根据题意设袋中共有球m个,则
    所以m=1.
    故袋中有1个球.
    故选:A.
    本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    5、D
    【解析】
    按照轴对称图形和中心对称图形的定义逐项判断即可.
    【详解】
    解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;
    B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;
    C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
    D、菱形是轴对称图形,也是中心对称图形,故本选项正确.
    故选:D.
    本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是解题的关键.
    6、B
    【解析】
    根据二次根式的双重非负性即可求得.
    【详解】
    代数式有意义,二次根号下被开方数≥0,故

    故选B.
    本题考查了二次根式有意义的条件,难度低,属于基础题,熟练掌握二次根式的双重非负性是解题关键.
    7、B
    【解析】
    由菱形的性质可得AO=AC=12,BO=BD=5,由勾股定理可求菱形的边长.
    【详解】
    如图,
    ∵四边形ABCD是菱形
    ∴AC⊥BD,AO=AC=12,BO=BD=5
    ∴AB==13
    故选B.
    本题考查了菱形的性质,利用勾股定理求AB长是本题的关键.
    8、C
    【解析】
    根据众数的定义即可求解.
    【详解】
    根据题意此次调查数据中最值得关注的是众数,
    故选C.
    此题主要考查众数的特点,解题的关键是熟知众数的定义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据一元二次方程的根与系数的关系即可解答.
    【详解】
    解:根据一元二次方程的根与系数关系可得:

    所以可得
    故答案为1.
    本题主要考查一元二次方程的根与系数关系,这是一元二次方程的重点知识,必须熟练掌握.
    10、
    【解析】
    设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.
    【详解】
    解:在菱形ABCD中,∠ABC=120°,
    ∴∠ABE=60°,AC⊥BD,
    ∵菱形ABCD的周长为16,
    ∴AB=4,
    在RT△ABE中,AE=ABsin∠ABE=,
    故可得AC=2AE=.
    故答案为.
    此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
    11、9 或
    【解析】
    如图,根据题意得:∠BAC=120°,易得∠ABC=60°,所以△ABC为等边三角形.如果AC=9,那么AB=9;如果BD=9,由菱形的性质可得边AB的长.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AD∥BC,∠ABD=∠CBD,OA=OC,OB=OD,AC⊥BD,AB=BC,
    ∵∠BAD=120°,
    ∴∠ABC=60°,
    ∴△ABC为等边三角形,
    如果AC=9,则AB=9,
    如果BD=9,
    则∠ABD=30°,OB=,
    ∴OA=AB,
    在Rt△ABO中,∠AOB=90°,∴AB2=OA2+OB2,
    即AB2=(AB)2 +()2,
    ∴AB=3,
    综上,菱形的边长为9或3.

    本题考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.注意分类讨论思想的运用.
    12、
    【解析】
    因为所购买的件数x≥3,所以顾客所付款y分成两部分,一部分是3×80=240,另一部分是(x-3)×80×0.8,让它们相加即可.
    【详解】
    解:∵x≥3,
    ∴y=3×80+(x-3)×80×0.8=64x+48(x≥3).
    故答案是:.
    此题主要考查利用一次函数解决实际问题,找到所求量的等量关系是解决问题的关键.
    13、
    【解析】
    根据根与系数的关系可得出,将其代入中即可求出结论.
    【详解】
    解:∵x1,x2是一元二次方程x2+x-2=0的两个实数根,
    ∴,
    ∴.
    故答案为:.
    本题考查了根与系数的关系,牢记两根之积等于是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)是等腰直角三角形,理由详见解析;(2)
    【解析】
    (1)利用旋转不变性证明A4BC是等腰直角三角形.
    (2)证明ACDE是等腰直角三角形,再在Rt△ADE中,求出AE即可解决问题.
    【详解】
    解:(1)是等腰直角三角形.
    理由:∵,
    ∴,
    ∴,
    ∴是等腰直角三角形.
    (2)如图:由旋转的性质可知:
    ,,,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴.
    本题考查旋转变换,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型
    15、(1)好点有:,,,和,共5个;(2),和;(3).
    【解析】
    (1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可;(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题;(3)如图3中,抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时Dm的值,即可判断.
    【详解】
    解:(1)当时,二次函数的表达式为
    画出函数图像(图1)
    图1
    当时,;当时,
    抛物线经过点和
    好点有:,,,和,共5个
    (2)当时,二次函数的表达式为
    画出函数图像(图2)
    图2
    当时,;当时,;当时,
    该抛物线上存在好点,坐标分别是,和
    (3)抛物线顶点P的坐标为
    点P支直线上
    由于点P在正方形内部,则
    如图3,点,
    图3
    当顶点P支正方形OABC内,且好点恰好存在8个时,抛物线与线段EF有交点(点F除外)
    当抛物线经过点时,
    解得:,(舍去)
    当抛物线经过点时,
    解得:,(舍去)
    当时,顶点P在正方形OABC内,恰好存在8个好点
    本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题.
    16、
    【解析】
    先求出b2-4ac的值,再代入公式求出即可.
    【详解】
    解:3x2-4x+2=0,
    ∵a=3,b=-4,c=2,
    ∴△=b2-4ac=(-4)2-4×3×2=24,
    ∴x==,
    则.
    本题考查了解一元二次方程—公式法.熟记公式x=是解题的关键.
    17、(1);(2)①,;②是,理由见解析
    【解析】
    (1)根据直角三角形、等腰三角形的性质,判断出△DBC是等边三角形,即可得到结论;
    (2)①根据线段的和差即可得到结论;
    ②根据方程的解得定义,判断AD是方程的解,则当AD=BE时,同时是方程的解,即可得到结论.
    【详解】
    解:(1)∵,

    又,
    是等边三角形.

    (2)①∵
    又,

    ②∵
    ∴线段的长是方程的一个根.
    若与的长同时是方程的根,则,
    即,


    ∴当时,与的长同时是方程的根.
    本题考查了勾股定理,一元二次方程的解;熟练掌握直角三角形和等腰三角形的性质求边与角的方法,掌握判断一元二次方程的解得方法是解题的关键.
    18、(1);(2)① ;②
    【解析】
    (1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n),利用反比例函数图象上点的坐标特征可求出m的值,结合OC:CD=5:3可求出n值,再将m,n的值代入k=mn中即可求出反比例函数的表达式;
    (2)由三角形的面积公式、矩形的面积公式结合S△PAO=S四边形OABC可求出点P的纵坐标.
    ①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;
    ②由点A,B的坐标及点P的纵坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,2),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用勾股定理可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用勾股定理可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.综上,此题得解.
    【详解】
    解:(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m−6,n).
    ∵点D,E在反比例函数的图象上,
    ∴k=mn=(m−6)n,
    ∴m=1.
    ∵OC:CD=5:3,
    ∴n:(m−6)=5:3,
    ∴n=5,
    ∴k=mn=×1×5=15,
    ∴反比例函数的表达式为y=;
    (2)∵S△PAO=S四边形OABC,
    ∴OA•yP=OA•OC,
    ∴yP=OC=2.
    ①当y=2时,=2,
    解得:x=,
    ∴若点P在这个反比例函数的图象上,点P的坐标为(,2).
    ②由(1)可知:点A的坐标为(1,0),点B的坐标为(1,5),
    ∵yP=2,yA+yB=5,
    ∴y P≠,
    ∴AP≠BP,
    ∴AB不能为对角线.
    设点P的坐标为(t,2).
    分AP=AB和BP=AB两种情况考虑(如图所示):
    (i)当AB=AP时,(1−t)2+(2−0)2=52,
    解得:t1=6,t2=12(舍去),
    ∴点P1的坐标为(6,2),
    又∵P1Q1=AB=5,
    ∴点Q1的坐标为(6,1);
    (ii)当BP=AB时,(1−t)2+(5−1)2=52,
    解得:t3=1−2,t2=1+2(舍去),
    ∴点P2的坐标为(1−2,2).
    又∵P2Q2=AB=5,
    ∴点Q2的坐标为(1−2,−1).
    综上所述:点Q的坐标为(6,1)或(1−2,−1).
    本题考查了反比例函数图象上点的坐标特征、三角形的面积、矩形的面积、菱形的性质以及勾股定理,解题的关键是:(1)利用反比例函数图象上点的坐标特征,求出点B的横纵坐标;(2)①由点P的纵坐标,利用反比例函数图象上点的坐标特征求出点P的坐标;②分AP=AB和BP=AB两种情况,利用勾股定理及菱形的性质求出点Q的坐标.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.
    【详解】
    解:∵四边形ABCD是矩形,AD=8,
    ∴BC=8,
    ∵△AEF是△AEB翻折而成,
    ∴BE=EF=3,AB=AF,△CEF是直角三角形,
    ∴CE=8-3=5,
    在Rt△CEF中,
    设AB=x,
    在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,
    解得x=1,则AB=1.
    故答案为:1.
    本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
    20、
    【解析】
    根据完全平方公式即可求解.
    【详解】
    ∵是完全平方式,
    故k=
    此题主要考查完全平方式,解题的关键是熟知完全平方公式的特点.
    21、15
    【解析】
    根据平行四边形与中位线的性质即可求解.
    【详解】
    ∵四边形ABCD为平行四边形,的周长是30,
    ∴△ADC的周长为30,
    ∵点、分别是平行四边形的两边、的中点.
    ∴DE=AD,DF=CD,EF=AC,
    ∴则的周长=×30=15.
    此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及中位线的性质.
    22、CE=3EO
    【解析】
    根据三角形的中位线得出DE=BC,DE∥BC,根据相似三角形的判定得出△DOE∽△BOC,根据相似三角形的性质求出CO=2EO即可.
    【详解】
    .解:CE=3EO,
    理由是:连接DE,
    ∵在△ABC中,BD,CE分别是边AC,AB上的中线,
    ∴DE=BC,DE∥BC,
    ∴△DOE∽△BOC,
    ∴ =,
    ∴CO=2EO,
    ∴CE=3EO,
    故答案为:CE=3EO.
    .本题考查了三角形的中位线定理和相似三角形的性质和判定,能求出DE=BC和△DOE∽△BOC是解此题的关键.
    23、a<c<b
    【解析】
    根据直线所过象限可得a<0,b>0,c>0,再根据直线陡的情况可判断出b>c,进而得到答案.
    【详解】
    根据三个函数图象所在象限可得a<0,b>0,c>0,
    再根据直线越陡,|k|越大,则b>c.
    则b>c>a,
    故答案为a<c<b.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    利用ASA即可得证;
    【详解】
    ∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AB∥CD,∴∠BAE=∠DCF
    ∴在△ABE和△CDF中,,∴△ABE≌△CDF,∴BE=DF.
    考点:1.平行四边形的性质;2.三角形全等的判定与性质.
    25、详见解析
    【解析】
    根据题意列出二元一次方程或三元一次方程,求出方程的正整数解,即可得出答案.
    【详解】
    解:第五类:设x个正三角形,y个正六边形,
    则60x+10y=360,
    x+2y=6,
    正整数解是或,
    即镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形(或4个正三角形和1个正六边形)的内角可以拼成一个周角,所以用正三角形和正六边形可以进行平面镶嵌;
    第六类:设x个正方形,y个正六边形,
    则90x+10y+=360,
    3x+4y=1,
    此方程没有正整数解,
    即镶嵌平面时,不能在一个顶点周围围绕着正方形和正六边形的内角拼成一个周角,所以不能用正方形和正六边形进行平面镶嵌;
    第七类:设x个正三角形,y个正方形,z个正六边形,
    则60x+90y+10z=360,
    2x+3y+4z=1,
    正整数解是,
    即镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形、1个正六边的内角可以拼成一个周角,所以用正三角形、正方形、正六边形可以进行平面镶嵌.
    本题考查了平面镶嵌和三元一次方程、二元一次方程的解等知识点,能求出每个方程的正整数解是解此题的关键.
    26、(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)
    【解析】
    分析:(1)点G的横坐标与点N的横坐标相同,易得EM为BC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4减MG的长度即为点G的纵坐标;
    (2)由△EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;
    (3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半径画弧,交直线EF于一点;做FG的垂直平分线交直线EF于一点,根据线段的长度和与坐标轴的夹角可得相应坐标.
    详解:(1)易得EM=1,CE=2,
    ∵EG=CE=2,
    ∴MG=,
    ∴GN=4-;
    G点的坐标为:(3,4-);
    (2)易得∠MEG的度数为60°,
    ∵∠CEF=∠FEG,
    ∴∠CEF=60°,
    ∴CF=2,
    ∴OF=4-2,
    ∴点F(0,4-2).
    设EF的解析式为y=kx+4-2,
    易得点E的坐标为(2,4),
    把点E的坐标代入可得k=,
    ∴EF的解析式为:y=x+4-2.
    (3)P1(1,4-)、P2(,7-2),
    P3(-,2-1)、P4(3,4+)
    点睛:本题综合考查了折叠问题和相应的三角函数知识,难点是得到关键点的坐标;注意等腰三角形的两边相等有多种不同的情况.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024-2025学年北京市西城区第十五中学九上数学开学统考试题【含答案】: 这是一份2024-2025学年北京市西城区第十五中学九上数学开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年北京市通州区名校九上数学开学质量检测试题【含答案】: 这是一份2024-2025学年北京市通州区名校九上数学开学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年北京市景山学校数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年北京市景山学校数学九上开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map