2024-2025学年安徽省宿州第九中学数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若与|x﹣y﹣3|互为相反数,则x+y的值为( )
A.3B.9C.12D.27
2、(4分)将直线y=﹣4x向下平移2个单位长度,得到的直线的函数表达式为( )
A.y=﹣4x﹣2B.y=﹣4x+2C.y=﹣4x﹣8D.y=﹣4x+8
3、(4分)若b>0,则一次函数y=﹣x+b的图象大致是( )
A.B.C.D.
4、(4分)如图,△ABC中,AB=6,AC=4,AD是∠BAC的外角平分线,CD⊥AD于D,且点E是BC的中点,则DE为( )
A.8.5B.8C.7.5D.5
5、(4分)如图,在中,,垂足为,,,则的长为( )
A.B.C.D.
6、(4分)如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是( )
A.B.C.D.
7、(4分)在下列各式中,一定是二次根式的是( )
A.B.C.D.
8、(4分)已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )
A.∠DAE=∠BAEB.∠DEA= ∠DABC.DE=BED.BC=DE
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若数使关于的不等式组,有且仅有三个整数解,则的取值范围是______.
10、(4分)对甲、乙两台机床生产的同一种零件进行抽样检测(抽查的零件个数相同),其平均数、方差的计算结果是:机床甲:,;机床乙:,.由此可知:____(填甲或乙)机床性能较好.
11、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.
12、(4分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=_____.
13、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图①,中,,点为边上一点,于点,点为中点,点为中点,的延长线交于点,≌.
(1)求证:;
(2)求的大小;
(3)如图②,过点作交的延长线于点,求证:四边形为矩形.
15、(8分)某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:
请根据图完成下面题目:
(1)抽查人数为_____人,a=_____.
(2)请补全条形统计图;
(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?
16、(8分)百货商店销售某种冰箱,每台进价2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;每台售价每降低10元时,平均每天能多售出1台.(销售利润=销售价-进价)
(1)如果设每台冰箱降价x元,那么每台冰箱的销售利润为______元,平均每天可销售冰箱______台;(用含x的代数式表示)
(2)商店想要使这种冰箱的销售利润平均每天达到5600元,且尽可能地清空冰箱库存,每台冰箱的定价应为多少元?
17、(10分)为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:
(1)填空:a = ,b= ;
(2)求这所学校平均每班贫困学生人数;
(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.
18、(10分)已知是等边三角形,D是BC边上的一个动点点D不与B,C重合是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.
如图1,求证:≌;
请判断图1中四边形BCEF的形状,并说明理由;
若D点在BC边的延长线上,如图2,其它条件不变,请问中结论还成立吗?如果成立,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.
20、(4分)直线是由直线向上平移______个单位长度得到的一条直线.直线是由直线向右平移______个单位长度得到的一条直线.
21、(4分)一元二次方程有实数根,则的取值范围为____.
22、(4分)使分式的值为0,这时x=_____.
23、(4分)在新年晚会的投飞镖游戏环节中,名同学的投掷成绩(单位:环)分别是:,,,,,,,则这组数据的众数是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(-)(+)--|-3|
25、(10分)如图,点是边上的中点,,垂足分别是点.
(1)若,求证:;
(2)若,求证:四边形是矩形.
26、(12分)某校某次外出社会实践活动分为三类,因资源有限,七年级7班分配到20个名额,其中甲类2个、乙类8个、丙类10个,已知该班有50名学生,班主任准备了50个签,其中甲类、乙类、丙类按名额设置、30个空签.采取抽签的方式来确定名额分配,请解决下列问题:
(1)该班小明同学恰好抽到丙类名额的概率是多少?
(2)该班小丽同学能有幸去参加实践活动的概率是多少?
(3)后来,该班同学强烈呼吁名额太少,要求抽到甲类的概率要达到20%,则还要争取甲类名额多少个?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
依题意得.
∴x+y=27.
故选D.
2、A
【解析】
上下平移时k值不变,b值是上加下减,依此求解即可.
【详解】
解:将直线y=﹣4x向下平移2个单位长度,得到直线y=﹣4x﹣2;
故选:A.
此题考查了一次函数图象与几何变换.要注意求直线平移后的解析式时k的值不变,只有b发生变化.
3、C
【解析】
分析:根据一次函数的k、b的符号确定其经过的象限即可确定答案.
详解:∵一次函数中
∴一次函数的图象经过一、二、四象限,
故选C.
点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.
一次函数的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
4、D
【解析】
延长BA、CD交于F,根据等腰三角形的判定定理和性质定理得到AF=AC,CD=DF,根据三角形中位线定理得到答案.
【详解】
延长BA、CD交于F,
∵AD是∠BAC的外角平分线,CD⊥AD,
∴AF=AC,CD=DF,
∴BF=BA+AF=BA+AC=10,
∵CD=DF,点E是BC的中点,
∴ED= BF=5,
故选:D.
此题考查三角形中位线定理,等腰三角形的判定与性质,解题关键在于作辅助线
5、A
【解析】
根据题意,可以证得△ACD∽△CBD,进而得到,由已知数据代入即可.
【详解】
由题意知,,
∴∠ADC=∠BDC=90°,∠A=∠BCD,
∴△ACD∽△CBD,
∴,
即,
∵,,
∴CD=4,
故选:A.
本题考查了直角三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.
6、B
【解析】
对于已知直线,分别令x与y为0求出对应y与x的值,确定出A与B的坐标,在x轴上取一点B′,使AB=AB′,连接MB′,由AM为∠BAO的平分线,得到∠BAM=∠B′AM,利用SAS得出两三角形全等,利用全等三角形的对应边相等得到BM=B′M,设BM=B′M=x,可得出OM=8-x,在Rt△B′OM中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出M坐标,设直线AM解析式为y=kx+b,将A与M坐标代入求出k与b的值,即可确定出直线AM解析式.
【详解】
对于直线,
令x=0,求出y=8;令y=0求出x=6,
∴A(6,0),B(0,8),即OA=6,OB=8,
根据勾股定理得:AB=10,
在x轴上取一点B′,使AB=AB′,连接MB′,
∵AM为∠BAO的平分线,
∴∠BAM=∠B′AM,
∵在△ABM和△AB′M中,
,
∴△ABM≌△AB′M(SAS),
∴BM=B′M,
设BM=B′M=x,则OM=OB﹣BM=8﹣x,
在Rt△B′OM中,B′O=AB′﹣OA=10﹣6=4,
根据勾股定理得:x2=42+(8﹣x)2,
解得:x=5,
∴OM=1,即M(0,1),
设直线AM解析式为y=kx+b,
将A与M坐标代入得:,
解得:,
则直线AM解析式为y=﹣x+1.
故选B.
此题考查了一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,一次函数与坐标轴的交点,勾股定理,全等三角形的判定与性质,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.
7、C
【解析】
试题解析::A、是三次根式;故本选项错误;
B、被开方数-10<0,不是二次根式;故本选项错误;
C、被开方数a2+1≥0,符合二次根式的定义;故本选项正确;
D、被开方数a<0时,不是二次根式;故本选项错误;
故选C.
点睛:式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.
8、C
【解析】
根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.
【详解】
解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;
B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;
C、无法证明DE=BE,故本选项符合题意;
D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.
故选B.
本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m的范围.
【详解】
解:解不等式组 得:
由有且仅有三个整数解即:3,2,1.
则:
解得:
本题考查了一元一次不等式组,利用不等式的解得出关于m的不等式组是解题关键.
10、甲
【解析】
试题解析:∵S2甲<S2乙,
∴甲机床的性能较好.
点睛:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
11、.
【解析】
设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.
【详解】
解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,如图:
∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,
∴∠OAD=∠BOE,
同理可得∠AOD=∠OBE,
在△AOD和△OBE中, ,
∴△AOD△OBE(ASA),
∵点B在第四象限,
∴,即,
解得,
∴反比例函数的解析式为:.
故答案为.
本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.
12、1.
【解析】
试题分析:利用平均数的定义,列出方程即可求解.
解:由题意知,3,a,4,6,7的平均数是1,
则=1,
∴a=21﹣3﹣4﹣6﹣7=1.
故答案为1.
点评:本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.
13、x1<x1
【解析】
由k=-1-a1,可得y随着x的增大而减小,由于1>-1, 所以x1<x1.
【详解】
∵y=(-1-a1)x+1,k=-1-a1<0,
∴y随着x的增大而减小,
∵1>-1,
∴x1<x1.
故答案为:x1<x1
本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)∠MEF=30°;(3)证明见解析.
【解析】
(1)利用直角三角形斜边中线的性质定理可得CM=DB,EM=DB,问题得证;
(2)利用全等三角形的性质,证明△DEM是等边三角形,即可解决问题;
(3)设FM=a,则AE=CM=EM=a,EF=2a,推出,,得到AN∥PM,易证四边形ANMP是平行四边形,结合∠P=90°即可解决问题.
【详解】
解:(1)证明:如图①中,
∵DE⊥AB,
∴∠DEB=∠DCB=90°,
∵DM=MB,
∴CM=DB,EM=DB,
∴CM=EM;
(2)解:∵△DAE≌△CEM,CM=EM,
∴AE=ED=EM=CM=DM,∠AED=∠CME=90°
∴△ADE是等腰直角三角形,△DEM是等边三角形,
∵∠AED=∠DEF=90°,∠DEM=60°,
∴∠MEF=30°;
(3)证明:如图②中,设FM=a.
由(2)可知△ADE是等腰直角三角形,△DEM是等边三角形,∠MEF=30°,
∴AE=CM=EM=a,EF=2a,
∵CN=NM,
∴MN=a,
∴,,
∴EM∥AN,
∵AP⊥PM,MN⊥PM,
∴AP∥MN,
∴四边形ANMP是平行四边形,
∵∠P=90°,
∴四边形ANMP是矩形.
本题考查了全等三角形的性质、等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形斜边中线定理、平行线分线段成比例定理以及矩形的判定等知识,解题的关键是灵活运用所学知识进行推理论证,学会利用参数解决问题,属于中考压轴题.
15、(1)100;0.3;(2)补图见解析;(3)280人.
【解析】
(1)根据爱好体育的有30人,频率为0.25可求出调查的人数,进而可得出a、b值;(2)根据b值补全条形统计图即可;(3)用爱好音乐的学生所占百分比乘以八年级的人数即可得答案.
【详解】
(1)25÷0.25=100(人),
∴a=30÷100=0.3,
故答案为:100;0.3
(2)b=100×0.35=35(人),
补全条形统计图如图:
(3)800×0.35=280(人)
答:该校八年级业余爱好音乐的学生约有280人.
本题考查读条形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
16、(1),;(2) 应定价2700元.
【解析】
(1)销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”;
(2)根据每台的盈利×销售的件数=5600元,即可列方程求解.
【详解】
解:(1)每台冰箱的销售利润为元,平均每天可销售冰箱台;
(2) 依题意,可列方程:
解方程,得x1 =120 ,x2 =200
因为要尽可能地清空冰箱库存,所以x=120舍去
2900-200=2700元
答:应定价2700元.
点睛:本题考查了一元二次方程的应用,关键是会表示一台冰箱的利润,销售量增加的部分.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
17、 (1) a=2,b=10;(2)2;(3).
【解析】
(1)利用扇形图以及统计表,即可解决问题;
(2)根据平均数的定义计算即可;
(3)列表分析即可解决问题.
【详解】
(1)由题意a=2,b=10%.
故答案为2,10%;
(2)这所学校平均每班贫困学生人数2(人);
(3)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:
由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为.
本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
18、 (1)见解析;(2) 四边形BCEF是平行四边形,理由见解析;(3) 成立,理由见解析.
【解析】
(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;
(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;
(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.
【详解】
和都是等边三角形,
,,,
又,,
,
在和中,
,
≌;
由得≌,
,
又,
,
,
又,
四边形BCEF是平行四边形;
成立,理由如下:
和都是等边三角形,
,,,
又,,
,
在和中,
,
≌;
,
又,,
,
,
,
又,
四边形BCEF是平行四边形.
本题考查了等边三角形的性质,全等三角形的判定与性质,平行四边形的判定等,熟练掌握相关的性质与定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x1<x1
【解析】
由k=-1-a1,可得y随着x的增大而减小,由于1>-1, 所以x1<x1.
【详解】
∵y=(-1-a1)x+1,k=-1-a1<0,
∴y随着x的增大而减小,
∵1>-1,
∴x1<x1.
故答案为:x1<x1
本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.
20、2, 1.
【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
【详解】
解:直线是由直线向上平移 2个单位长度得到的一条直线.由直线向右平移 1个单位长度得到.
故答案是:2;1.
本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
21、
【解析】
根据根的判别式求解即可.
【详解】
∵一元二次方程有实数根
∴
解得
故答案为:.
本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.
22、1
【解析】
试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
答案为1.
考点:分式方程的解法
23、1
【解析】
直接利用众数的定义得出答案.
【详解】
∵7,1,1,4,1,8,8,中1出现的次数最多,
∴这组数据的众数是:1.
故答案为:1.
本题主要考查了众数的定义,解题的关键是掌握众数的定义:一组数据中,出现次数最多的数就叫这组数据的众数.
二、解答题(本大题共3个小题,共30分)
24、-
【解析】
分析:先进行二次根式的乘法法则运算,化简二次根式和去绝对值,然后化简后合并即可.
详解:原式=5-2-2-(3-)
=3-2-3+
=-.
点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
25、 (1)证明见解析;(2)证明见解析.
【解析】
(1)由“SAS”可证△BFD≌△CED;
(2)由三角形内角和定理可得∠A=90°,由三个角是直角的四边形是矩形可判定四边形AEDF是矩形.
【详解】
证明:(1)∵点D是△ABC边BC上的中点
∴BD=CD
又∵DE⊥AC,DF⊥AB,垂足分别是点E、F
∴∠BFD=∠DEC=90°
∵BD=CD,∠BFD=∠DEC,∠B=∠C
∴△BFD≌△CED (AAS)
(2)∵∠B+∠C=90°,∠A+∠B+∠C=180°
∴∠A=90°
∵∠BFD=∠DEC=90°
∴∠A=∠BFD=∠DEC=90°
∴四边形AEDF是矩形
本题考查了矩形的判定,全等三角形的判定和性质,熟练运用矩形的判定是本题的关键.
26、(1);(2);(3)8个名额
【解析】
(1)直接利用概率公式计算;
(2)直接利用概率公式计算;
(3)设还要争取甲类名额x个,利用概率公式得到,然后解方程求出x即可.
【详解】
(1)该班小明同学恰好抽到丙类名额的概率=;
(2)该班小丽同学能有幸去参加实践活动的概率=;
(3)设还要争取甲类名额x个,
根据题意得,
解得x=8,
答:要求抽到甲类的概率要达到20%,则还要争取甲类名额8个.(1)
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
题号
一
二
三
四
五
总分
得分
频数
频率
体育
25
0.25
美术
30
a
音乐
b
0.35
其他
10
0.1
贫困学生人数
班级数
1名
5
2名
2
3名
a
5名
1
2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省宿州十三校数学九上开学统考试题【含答案】: 这是一份2024-2025学年安徽省宿州十三校数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。