2024-2025学年北京市西城区第十五中学九上数学开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中,为假命题的是( )
A.两组邻边分别相等的四边形是菱形B.对角线互相垂直平分的四边形是菱形
C.四个角相等的四边形是矩形D.对角线相等的平行四边形是矩形
2、(4分)如图,在中,,,平分交于点,点为的中点,连接,则的周长为( )
A.12B.14C.15D.20
3、(4分)已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1, 2)在这个反比例函数上,a的值可以是( )
A.0B.1C.2D.3
4、(4分)一艘轮船和一艘快艇沿相同路线从甲港岀发匀速行驶至乙港,行驶路程随时间变化的图象如图,则下列结论错误的是( )
A.轮船的速度为20千米时B.轮船比快艇先出发2小时
C.快艇到达乙港用了6小时D.快艇的速度为40千米时
5、(4分)小明在家中利用物理知识称量某个品牌纯牛奶的净含量,称得六盒纯牛奶的含量分别为:248mL,250mL,249mL,251mL,249mL,253mL,对于这组数据,下列说法正确的是( ).
A.平均数为251mLB.中位数为249mL
C.众数为250mLD.方差为
6、(4分)已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
A.1B.3C.4D.5
7、(4分)下列语句正确的是( )
A.对角线互相垂直的四边形是菱形
B.有两对邻角互补的四边形为平行四边形
C.矩形的对角线相等
D.平行四边形是轴对称图形
8、(4分)若二次根式有意义,则x的取值范围是( )
A.x≥-5B.x>-5C.x≥5D.x>5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.
10、(4分)给出下列3个分式:,它们的最简公分母为__________.
11、(4分)已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.
12、(4分)如图,在RtACB中,∠C=90°,AB=2,以点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点P,作射线BP交AC于点D,若CD=1,则ABD的面积为_____.
13、(4分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 ▲ 人.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.
求证:AP=EF.
15、(8分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;
(2)在图2中画出线段AB的垂直平分线.
16、(8分)某楼盘2018年2月份以每平方米10000元的均价对外销售,由于炒房客的涌入,房价快速增长,到4月份该楼盘房价涨到了每平方米12100元.5月份开始政府再次出台房地产调控政策,逐步控制了房价的连涨趋势,到6月份该楼盘的房价为每平方米12000元.
(1)求3、4两月房价平均每月增长的百分率;
(2)由于房地产调控政策的出台,购房者开始持币观望,为了加快资金周转,房地产开发商对于一次性付清购房款的客户给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,总价优惠10000元,并送五年物业管理费,物业管理费是每平方米每月1.5元,小颖家在6月份打算购买一套100平方米的该楼盘房子,她家该选择哪种方案更优惠?
17、(10分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.
(1)三角形三边长为4,3,;
(2)平行四边形有一锐角为45°,且面积为1.
18、(10分)如图,中,是上的一点,若,,,,求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=_____,对角线AC的长为_____.
20、(4分)将二次根式化为最简二次根式的结果是________________
21、(4分)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.
22、(4分)如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.
23、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.
(1)求证:四边形DEGF是平行四边形;
(2)当点G是BC的中点时,求证:四边形DEGF是菱形.
25、(10分)如图,已知一条直线经过点A(0,2),点B(1,0),将这条直线向左平移与x轴y轴分别交于点C、点D.若DB=DC,求直线CD对应的函数解析式.
26、(12分)已知△ABC的三边长a、b、c满足|a-4|+(2b- 12)2+ =0,试判断△ABC的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据特殊的平行四边形的判定即可逐一判断.
【详解】
解:两组邻边分别相等的四边形不一定是菱形,如AB=AD,CB=CD,但AB≠CB的四边形,故选项A中的命题是假命题,故选项A符合题意;
对角线互相垂直平分的四边形是菱形是真命题,故选项B不符合题意;
四个角相等的四边形是矩形是真命题,故选项C不符合题意;
对角线相等的平行四边形是矩形是真命题,故选项D不符合题意;
故选:A.
本题考查命题与定理,解答本题的关键是明确题意,熟练掌握特殊的平行四边形的判定定理,会判断命题的真假.
2、B
【解析】
根据AB=AC,可知△ABC为等腰三角形,由等腰三角形三线合一的性质可得AD⊥BC,AD为△ABC的中线,故,∠ADC=90°,又因为点E为AC的中点,可得,从而可以得到△CDE的周长.
【详解】
解:∵AB=AC,
∴△ABC是等腰三角形.
又∵AD平分∠BAC,
∴AD⊥BC,AD是△ABC的中线,
∴∠ADC=90°,,
在中,点E为AC的中点,
,
∵AB=AC=10,BC=8,
∴,.
∴△CDE的周长为:.
故选:B.
本题考查了等腰三角形三线合一的性质,直角三角形斜边上的中线等于斜边的一半的性质,关键是正确分析题目,从中得出需要的信息.
3、A
【解析】
根据函数的增减性判断出图象所在象限,进而得出图象上点的坐标特征,将四个选项的数值代入P(a-1,2)验证即可.
解:∵反比例函数,在每个象限内y随着x的增大而增大,
∴函数图象在二、四象限,
∴图象上的点的横、纵坐标异号.
A、a=0时,得P(-1,2),故本选项正确;
B、a=1时,得P(0,2),故本选项错误;
C、a=2时,得P(1,2),故本选项错误;
D、a=3时,得P(2,2),故本选项错误.
故选A.
此题考查了反比例函数图象上点的坐标特征,要熟悉反比例函数的性质,同时要注意数形结合.
4、C
【解析】
观察图象可知,该函数图象表示的是路程与时间的函数关系,依据图象中的数据进行计算即可。
【详解】
A.轮船的速度为=20千米时,故本选项正确;
B.轮船比快艇先出发2小时,故本选项正确;
C.快艇到达乙港用了6-2=4小时,故本选项错误;
D.快艇的速度为=40千米时,故本选项正确;
故选:C.
本题考查了一次函数图象的运用、行程问题的数量关系的运用,解题时分析函数图象提供的信息是关键。
5、D
【解析】
试题分析:中位数是一组数据按大小顺序排列,中间一个数或两个数的平均数,即为中位数;出现次数最多的数即为众数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.A、这组数据平均数为:(248+250+249+251+249+253)÷6=250,故此选项错误;B、数据重新排列为:248,249,249,250,251,253,其中位数是(249+250)÷2=249.5,故此选项错误;C、这组数据出现次数最多的是249,则众数为249,故此选项错误;D、这组数据的平均数250,根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],则其方差为:×[(248﹣250)2+(250﹣250)2+(249﹣250)2+(251﹣250)2+(249﹣250)2+(253﹣250)2]=,故此选项正确;故选D.
考点:平均数、中位数、众数、方差的定义.
6、D
【解析】
根据二次函数的图象与性质即可求出答案.
【详解】
解:①由抛物线的对称轴可知:,
∴,
由抛物线与轴的交点可知:,
∴,
∴,故①正确;
②抛物线与轴只有一个交点,
∴,
∴,故②正确;
③令,
∴,
∵,
∴,
∴,
∴,
∵,
∴,故③正确;
④由图象可知:令,
即的解为,
∴的根为,故④正确;
⑤∵,
∴,故⑤正确;
故选D.
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
7、C
【解析】
分析:
根据各选项中所涉及的几何图形的性质或判断进行分析判断即可.
详解:
A选项中,因为“对角线互相垂直的平行四边形才是菱形”,所以A中说法错误;
B选项中,因为“有两对邻角互补的四边形不一定是平行四边形,如梯形”,所以B中说法错误;
C选项中,因为“矩形的对角线是相等的”,所以C中说法正确;
D选项中,因为“平行四边形是中心对称图形,但不是轴对称图形”,所以D中说法错误.
故选C.
点睛:熟记“各选项中所涉及的几何图形的性质和判定”是解答本题的关键.
8、C
【解析】
【分析】根据二次根式有意义的条件:被开方数为非负数进行求解即可得.
【详解】由题意得:x-5≥0,
解得:x≥5,
故选C.
【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<<
【解析】
分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.
【详解】
解:当x=1时,=-2×1=-2;
当x=-1时,=-2×(-1)=2;
当x=-2时,=-2×(-2)=4;
∵-2<2<4
∴<<
故答案为:<<.
本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.
10、a2bc.
【解析】
解:观察得知,这三个分母都是单项式,确定这几个分式的最简公分母时,相同字母取次数最高的,不同字母连同它的指数都取着,系数取最小公倍数,所以它们的最简公分母是a2bc.
故答案为:a2bc.
考点:分式的通分.
11、
【解析】
试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,
∴b>0,
∵y随x的增大而减小,
∴k<0,
例如y=-x+1(答案不唯一,k<0且b>0即可).
考点:一次函数图象与系数的关系.
12、
【解析】
过点D作DH⊥AB于H.利用角平分线的性质定理求出DH,然后根据三角形的面积公式即可解决问题.
【详解】
解:如图,过点D作DH⊥AB于H.
∵DC⊥BC,DH⊥AB,BD平分∠ABC,
∴DH=CD=1,
∴S△ABD=•AB•DH=×2×1=,
故答案为:.
本题主要考查角平分线的尺规作图及性质,掌握角平分线的性质是解题的关键.
13、216
【解析】
由题意得,50个人里面坐公交车的人数所占的比例为:15/50 =30%,
故全校坐公交车到校的学生有:720×30%=216人.
即全校坐公交车到校的学生有216人.
三、解答题(本大题共5个小题,共48分)
14、见试题解析
【解析】
试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.
证明:如图,连接PC,
∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,
∴∠PEC=∠PFC=∠ECF=90°,
∴四边形PECF为矩形,
∴PC=EF,
又∵P为BD上任意一点,
∴PA、PC关于BD对称,
可以得出,PA=PC,所以EF=AP.
15、(1)答案见解析;(2)答案见解析.
【解析】
试题分析:(1)根据等腰直角三角形的性质即可解决问题.
(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.
试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).
(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.
考点:作图—应用与设计作图.
16、(1)3、4两月房价平均每月增长的百分率为10%;(2)选择第一种方案更优惠.
【解析】
(1)设3、4两月房价平均每月增长的百分率为x,根据2月份及4月份该楼盘房价,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据两种优惠方案,分别求出选择两种方案优惠总额,比较后即可得出结论.
【详解】
解:(1)设3、4两月房价平均每月增长的百分率为x,
根据题意得:10000(1+x)2=12100,
解得:x1=0.1=10%,x2=﹣2.1(舍去).
答:3、4两月房价平均每月增长的百分率为10%.
(2)选择第一种优惠总额=100×12000×(1﹣0.98)=24000(元),
选择第二种优惠总额=100×1.5×12×5+10000=19000(元).
∵24000>19000,
∴选择第一种方案更优惠.
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)分别求出选择两种方案优惠总额.
17、(1)见解析;(2)见解析.
【解析】
分析:(1)4在网格线上,3是直角边为3的直角三角形的斜边,是直角边分别为1和3的直角三角形的斜边;(2)先构造一个直角边为2的等腰直角三角形,以此为基础再构造平行四边形.
详解:(1)图(1)即为所求;
(2)图(2)即为所求.
点睛:本题考查了勾股定理,在格点中,可结合网格中的直角构造直角三角形,一般有理数可用网格线表示,无理数可表示为直角三角形的斜边,勾股定理确定它的两条直角边.
18、的面积是.
【解析】
根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
【详解】
解:∵BD2+AD2=62+82=102=AB2,
∴△ABD是直角三角形,
∴AD⊥BC,
在Rt△ACD中,
∴S△ABC=BC•AD=(BD+CD)•AD=×21×8=1,
因此△ABC的面积为1.
答:△ABC的面积是1.
此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、120° 10
【解析】
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AD∥BC,
∵E是AB的中点,且DE⊥AB,
∴AE=AD,
∴sin∠ADE=,
∴∠ADE=30°,
∴∠DAE=60°,
∵AD∥BC,
∴∠ABC=180°−60°=120°;
连接BD,交AC于点O,
在菱形ABCD中,∠DAE=60°,
∴∠CAE=30°,AB=10,
∴OB=5,
根据勾股定理可得:AO= = ,
即AC=.
故答案为:120°;.
点睛:本题考查了菱形的性质、线段垂直平分线的性质、勾股定理等知识点,熟练掌握菱形的性质是解题的关键. 由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=AD,即可求得∠ADE=30°,继而求得答案;连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案.
20、4
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
,
故答案为:4
此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
21、35°
【解析】
根据折叠的性质可得∠ECB=∠ECF,CB=CF,根据菱形的性质可得CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,求出等腰三角形DCF的顶角∠DCF,即可求出∠ECF的度数
【详解】
解:在菱形ABCD中,CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,
根据折叠可得:∠ECB=∠ECF,CB=CF,
∴CF=CD
∴∠DCF=180°-70°-70°=40°,
∴∠ECF=(∠BCD-∠DCF)=35°.
故答案为35°.
本题考查图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
22、答案不唯一,如∠ACB=90° 或∠BAC=45°或∠B=45°
【解析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.
【详解】
∠ACB=90°时,四边形ADCF是正方形,
理由:∵E是AC中点,
∴AE=EC,
∵DE=EF,
∴四边形ADCF是平行四边形,
∵AD=DB,AE=EC,
∴DE=BC,
∴DF=BC,
∵CA=CB,
∴AC=DF,
∴四边形ADCF是矩形,
点D. E分别是边AB、AC的中点,
∴DE//BC,
∵∠ACB=90°,
∴∠AED=90°,
∴矩形ADCF是正方形.
故答案为∠ACB=90°.
此题考查正方形的判定,解题关键在于掌握判定法则
23、
【解析】
根据平行四边形的性质可得到答案.
【详解】
∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.
本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.
二、解答题(本大题共3个小题,共30分)
24、证明见详解.
【解析】
(1)求出平行四边形AGCD,推出CD=AG,推出EG=DF,EG∥DF,根据平行四边形的判定推出即可.
(2)连接DG,求出∠DGC=90°,求出DF=GF,根据菱形的判定推出即可.
【详解】
(1)∵AG∥DC,AD∥BC,
∴四边形AGCD是平行四边形
∴AG=DC
∵E、F分别为AG、DC的中点,
∴GE=AG,DF=DC,
即GE=DF,GE∥DF
∴四边形DEGF是平行四边形
(2)连接DG,
∵四边形AGCD是平行四边形,
∴AD=CG
∵G为BC中点,
∴BG=CG=AD
∵AD∥BG,
∴四边形ABGD是平行四边形
∴AB∥DG
∵∠B=90°,
∴∠DGC=∠B=90°
∵F为CD中点,
∴GF=DF=CF,
即GF=DF
∵四边形DEGF是平行四边形,
∴四边形DEGF是菱形.
25、y=-1x-1
【解析】
解:设直线AB的解析式为y=kx+b,
把A(0,1)、点B(1,0)代入,得,
解得,
故直线AB的解析式为y=﹣1x+1;
将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,
∴DO垂直平分BC,
∴CD=AB,
∴点D的坐标为(0,﹣1),
∵平移后的图形与原图形平行,
∴平移以后的函数解析式为:y=﹣1x﹣1.
26、△ABC为直角三角形,理由见解析.
【解析】
根据绝对值、平方、二次根式的非负性即可列出式子求出a,b,c的值,再根据勾股定理即可判断.
【详解】
△ABC为直角三角形,理由,
由题意得a-4=0.2b-12=0,10-c=0 ,
所以a=8、b=6,c=10.
所以a2 +b2=c2 , △ABC为直角三角形.
此题主要考查勾股定理的应用,解题的关键是根据非负性求出各边的长.
题号
一
二
三
四
五
总分
得分
2024-2025学年北京市崇文区名校九上数学开学监测模拟试题【含答案】: 这是一份2024-2025学年北京市崇文区名校九上数学开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年北京二中学教育集团数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年北京二中学教育集团数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省宿州十三校数学九上开学统考试题【含答案】: 这是一份2024-2025学年安徽省宿州十三校数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。