|课件下载
终身会员
搜索
    上传资料 赚现金
    2025届高考数学一轮复习教师用书第八章第二节空间点、直线、平面之间的位置关系讲义(Word附解析)
    立即下载
    加入资料篮
    2025届高考数学一轮复习教师用书第八章第二节空间点、直线、平面之间的位置关系讲义(Word附解析)01
    2025届高考数学一轮复习教师用书第八章第二节空间点、直线、平面之间的位置关系讲义(Word附解析)02
    2025届高考数学一轮复习教师用书第八章第二节空间点、直线、平面之间的位置关系讲义(Word附解析)03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届高考数学一轮复习教师用书第八章第二节空间点、直线、平面之间的位置关系讲义(Word附解析)

    展开
    第二节 空间点、直线、平面之间的位置关系【必备知识·逐点夯实】【知识梳理·归纳】1.四个基本事实基本事实1:过不在一条直线上的三个点,有且只有一个平面.符号:A,B,C三点不共线⇒存在唯一的α使A,B,C∈α.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.符号:A∈l,B∈l,且A∈α,B∈α⇒l⊂α.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号:P∈α,且P∈β⇒α∩β=l,且P∈l.基本事实4:平行于同一条直线的两条直线平行.符号:a∥b,b∥c⇒a∥c.2.基本事实的三个推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间点、直线、平面之间的位置关系【微点拨】(1)直线在平面外分直线与平面平行和直线与平面相交两种情况.(2)两条直线没有公共点分直线与直线平行和直线与直线异面两种情况.4.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.5.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任意一点O分别作直线a'∥a,b'∥b,把a'与b'所成的角叫做异面直线a与b所成的角(或夹角).(2)范围:0,π2.【基础小题·自测】1.(多维辨析)(多选题)下列结论错误的是(  )A.如果两个平面有三个公共点,则这两个平面重合B.经过两条相交直线,有且只有一个平面C.两两相交的三条直线共面D.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线【解析】选ACD.A中的两个平面可能相交;B正确;C中的三条直线相交于一点时可能不共面;D中的两条直线可能是平行直线.2.(易错题)若直线l不平行于平面α,且l⊄α,则(  )A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交【解析】选B.由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.3.(多选题)(2022·新高考Ⅰ卷)已知正方体ABCD-A1B1C1D1,则(  )A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【解析】选ABD.如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确.在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1,连接B1C,则B1C⊥BC1,因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确.连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB,因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=2a,OC1=2a2,所以在Rt△BOC1中,OC1=12BC1,所以∠OBC1=30°,故C错误.因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.4.(必修二P134例1变形式)如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形; (2)当AC,BD满足条件________时,四边形EFGH为正方形. 【解析】(1)因为四边形EFGH为菱形,所以EF=EH,因为EF=12AC,EH=12BD,所以AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH.因为EF∥AC,EH∥BD,且EF=12AC,EH=12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD (2)AC=BD且AC⊥BD【核心考点·分类突破】考点一 空间位置关系的判断[例1](1)(多选题)下列选项正确的是(  )A.两两相交且不过同一点的三条直线必在同一平面内B.过空间中任意三点有且仅有一个平面C.若空间两条直线不相交,则这两条直线平行D.若直线l⊂平面α,直线m⊥平面α,则m⊥l【解析】选AD.对于选项A,可设l1与l2相交,这两条直线确定的平面为α;若l3与l1相交于B,则交点B在平面α内,同理,l3与l2的交点A也在平面α内,所以AB⊂α,即l3⊂α,选项A正确.对于选项B,若三点共线,则过这三个点的平面有无数个,选项B错误.对于选项C,空间中两条直线可能相交、平行或异面,选项C错误.对于选项D,若直线m⊥平面α,则m垂直于平面α内所有直线.因为直线l⊂平面α,所以直线m⊥直线l,选项D正确.(2)如图,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH与MN是异面直线的图形有________.(填序号) 【解析】题图①中,直线GH∥MN;题图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此GH与MN共面;题图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以题图②④中GH与MN异面.答案:②④【解题技法】1.点、线共面的判断方法(1)纳入平面法:要证明“点共面”或“线共面”,可先由部分点或直线确定一个平面,再证其余点或直线也在这个平面内.(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合. (3)证明四点共面常通过证明四点组成的四边形为平行四边形或梯形来解决.2.两直线位置关系的判断【微提醒】平面外一点与平面内一点的连线与平面内不经过该点的直线是异面直线.【对点训练】1.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定(  )A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【解析】选C.由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据基本事实4,知a∥b,与a,b为异面直线矛盾,D错误.2.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是__________(写出所有错误命题的序号). 【解析】由基本事实4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b不同在任何一个平面内,故④错误.答案:②③④考点二 基本事实及其应用[例2]如图,在长方体ABCD-A1B1C1D1中,E,F分别是B1C1和C1D1的中点.求证:(1)E,F,D,B四点共面;(2)BE,DF,CC1三线共点.【证明】(1)如图,连接EF,BD,B1D1,因为EF是△B1C1D1的中位线,所以EF∥B1D1,因为BB1与DD1平行且相等,所以四边形BDD1B1是平行四边形,所以BD∥B1D1,所以EF∥BD,所以E,F,D,B四点共面;(2)因为EF∥BD,且EF≠BD,所以直线BE和DF相交,延长BE,DF,设它们相交于点P,因为P∈直线BE,直线BE⊂平面BB1C1C,所以P∈平面BB1C1C,因为P∈直线DF,直线DF⊂平面CDD1C1,所以P∈平面CDD1C1,因为平面BB1C1C∩平面CDD1C1=CC1,所以P∈CC1,所以BE,DF,CC1三线共点.【解题技法】1.证明空间点共线问题的方法(1)一般转化为证明这些点是某两个平面的公共点,再根据基本事实3证明这些点都在这两个平面的交线上.(2)选择其中两点确定一条直线,然后证明其余点也在该直线上.2.共面、共点问题(1)先确定一个平面,然后再证其余的线(或点)在这个平面内;(2)利用确定平面的定理,如由点构造平行直线、构造相交直线等.【对点训练】1.如图,α∩β=l,A,B∈α,C∈β,且A,B,C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必经过(  )A.点AB.点BC.点C但不过点MD.点C和点M【解析】选D.因为AB⊂γ,M∈AB,所以M∈γ.又α∩β=l,M∈l,所以M∈β.根据基本事实3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.所以γ与β的交线必经过点C和点M.2.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且CG=13BC,CH=13DC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点.【证明】(1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG=13BC,CH=13DC,所以GH∥BD,所以EF∥GH,所以E,F,G,H四点共面.(2)易知FH与直线AC不平行,但共面,所以设FH∩AC=M,所以M∈平面EFHG,M∈平面ABC.又因为平面EFHG∩平面ABC=EG,所以M∈EG,所以FH,EG,AC共点.考点三 异面直线所成的角[例3](1)如图所示,圆柱O1O2的底面半径为1,高为2,AB是一条母线,BD是圆O1的直径,C是上底面圆周上一点,∠CBD=30°,则异面直线AC与BD所成角的余弦值为(  )A.33535 B.43535C.3714 D.277【解析】选C.连接AO2,设AO2的延长线交下底面圆周上的点为E,连接CE,易知∠CAE(或其补角)即为异面直线AC与BD所成的角,连接CD(图略),在Rt△BCD中,∠BCD=90°,BD=2,∠CBD=30°,得BC=3,CD=1.又AB=DE=AE=BD=2,AC=AB2+BC2=7,CE=DC2+DE2=5,所以在△CAE中, cos∠CAE=AC2+AE2-CE22AC·AE=7+4-52×7×2=3714,即异面直线AC与BD所成角的余弦值为3714.(2)(2023·武汉模拟)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1,D,E分别为AC,BC的中点,则异面直线C1D与B1E所成角的余弦值为(  )A.33 B.55C.1010 D.3010【解析】选D.设AB=2,取A1B1的中点F,连接C1F,DF,DE,则B1F=12A1B1,因为D,E分别为AC,BC的中点,所以DE∥AB,DE=12AB,因为A1B1∥AB,A1B1=AB,所以DE∥B1F,B1F=DE,所以四边形DEB1F为平行四边形,所以DF∥B1E,所以∠C1DF为异面直线C1D与B1E所成的角或补角.因为AB⊥BC,AB=BC=AA1=2,D,E分别为AC,BC的中点,所以DF=B1E=12+22=5,C1F=12+22=5,C1D=(2)2+22=6,所以cos∠C1DF=12C1DDF=625=3010.【解题技法】求异面直线所成角的方法(1)求异面直线所成角的常用方法是平移法.平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成角的三步:一作、二证、三求.①一作:根据定义作平行线,作出异面直线所成的角;②二证:证明作出的角是异面直线所成的角;③三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.【对点训练】1.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为(  )A.π2 B.π3 C.π4 D.π6【解析】选D.如图,连接A1C1,BC1,因为AD1∥BC1,所以∠PBC1为直线PB与AD1所成的角.设正方体的棱长为2,则PB=6,PC1=2,BC1=22,则PB2+PC12=BC12,在Rt△PBC1中,因为sin ∠PBC1=PC1BC1=222=12,所以直线PB与AD1所成的角为π6.2.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE=14SB,则异面直线SC与OE所成角的正切值为(  )A.222 B.53 C.1316 D.113【解析】选D.如图,过点S作SF∥OE,交AB于点F,连接CF,则∠CSF(或其补角)为异面直线SC与OE所成的角.因为SE=14SB,所以SE=13BE.又OB=3,所以OF=13OB=1.因为SO⊥OC,SO=OC=3,所以SC=32.因为SO⊥OF,所以SF=SO2+OF2=10.因为OC⊥OF,所以CF=10.所以在等腰△SCF中,tan∠CSF=(10)2-(322) 2322=113.即异面直线SC与OE所成角的正切值为113.【加练备选】   平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为(  )A.32 B.22 C.33 D.13【解析】选A.如图所示,过点A补作一个与正方体ABCD-A1B1C1D1相同棱长的正方体,易知平面α为平面AF1E,则m,n所成的角为∠EAF1.因为△AF1E为正三角形,所以sin∠EAF1=sin 60°=32. 课程标准1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解四个基本事实和一个定理.2.能运用基本事实、定理和已获得的结论证明空间基本图形位置关系的简单命题.考情分析考点考法:以空间几何体为载体,考查基本事实及其结论在判断位置关系、交线问题、求角中的应用.求异面直线所成的角是高考的热点,在各个题型中均有所体现.核心素养:直观想象、数学运算、逻辑推理.项目直线与直线直线与平面平面与平面平行关系图形语言符号语言a∥ba∥αα∥β相交关系图形语言符号语言a∩b=Aa∩α=Aα∩β=l其他关系图形语言-符号语言a,b是异面直线a⊂α-类型辨析改编易错高考题号1423
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2025届高考数学一轮复习教师用书第八章第二节空间点、直线、平面之间的位置关系讲义(Word附解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map