终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2025届高考数学一轮复习教师用书拓展拔高3用构造法解决函数问题讲义(Word附解析)

    立即下载
    加入资料篮
    2025届高考数学一轮复习教师用书拓展拔高3用构造法解决函数问题讲义(Word附解析)第1页
    2025届高考数学一轮复习教师用书拓展拔高3用构造法解决函数问题讲义(Word附解析)第2页
    2025届高考数学一轮复习教师用书拓展拔高3用构造法解决函数问题讲义(Word附解析)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届高考数学一轮复习教师用书拓展拔高3用构造法解决函数问题讲义(Word附解析)

    展开

    拓展拔高3 用构造法解决函数问题【高考考情】函数中的构造问题是高考考查的一个热点内容,既可能在选择、填空题中运用,也可能在解答题中出现.【解题关键】通过已知等式或不等式的结构特征,构造新函数,解决比较大小、解不等式、恒成立等问题.视角一 通过变量构造具体函数[例1](1)若0x1ex2.(2)(2023·石家庄模拟)若ln x-ln y1,y>1),则(  )A.ey-x>1 B.ey-x1 D.ey-x-10,且有f(3)=3,则f(x)>3e3-x的解集为(3,+∞). 【解析】设F(x)=f(x)·ex,则F'(x)=f'(x)·ex+f(x)·ex=ex[f(x)+f'(x)]>0,所以F(x)在R上单调递增.又f(3)=3,则F(3)=f(3)·e3=3e3.因为f(x)>3e3-x等价于f(x)·ex>3e3,即F(x)>F(3),所以x>3,即所求不等式的解集为(3,+∞).【思维升华】(1)出现f'(x)+nf(x)形式,构造函数F(x)=enxf(x);(2)出现f'(x)-nf(x)形式,构造函数F(x)=f(x)enx.【迁移应用】已知可导函数f(x)的导函数为f'(x),若对任意的x∈R,都有f'(x)-f(x)2 023ex的解集为(  )A.(-∞,0) B.(0,+∞)C.(-∞,1e) D.(-∞,1)【解析】选A.构造函数F(x)=f(x)+1ex,则F'(x)=f'(x)·ex-[f(x)+1]·exe2x=f'(x)-f(x)-1ex,因为f'(x)-f(x)

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map