所属成套资源:高中数学人教A版(2019)必修第二册课件多份
高中数学人教A版 (2019)必修 第二册10.3 频率与概率评课课件ppt
展开
这是一份高中数学人教A版 (2019)必修 第二册10.3 频率与概率评课课件ppt,共25页。PPT课件主要包含了随机数与伪随机数,随机模拟方法,练习第257页等内容,欢迎下载使用。
1.理解随机模拟试验出现地意义.2.利用随机模拟试验求概率.
用频率估计概率,需要做大量的重复试验.有没有其他方法可以替代试验呢? 我们知道,利用计算器或计算机软件可以产生随机数.实际上,我们也可以根据不同的随机试验构建相应的随机数模拟试验,这样就可以快速地进行大量重复试验了.
随机数与伪随机数例如我们要产生1~9 之间的随机整数,像彩票摇奖那样,把10个质地和大小相同的号码球放入摇奖器中,充分搅拌后摇出一个球,这个球上的号码就称为随机数.计算器或计算机产生的随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质.因此,计算器或计算机产生的随机数不是真正的随机数,我们称它们为伪随机数.
环节一:创设情境,引入课题
例如,对于抛掷一枚质地均匀硬币的试验,我们可以让计算器或计算机产生取值于集合{0, 1}的随机数,用0表示反面朝上,用1表示正面朝上.这样不断产生0,1两个随机数,相当于不断地做抛掷硬币的试验.
又如,一个袋中装有2个红球和3个白球,这些球除颜色不同外没有其他差别.对于从袋中摸出一个球的试验,我们可以让计算器或计算机产生取值于集合{1, 2, 3, 4, 5}的随机数,用1,2表示红球,用3,4,5表示白球.这样不断产生1~5之间的整数随机数,相当于不断地做从袋中摸球的试验.
环节二:观察分析,感知概念
画岀频率折线图(图10.3-2),从图中可以看出:随着试验次数的增加,摸到红球的频率稳定于概率0.4.
我们称利用随机模拟解决问题的方法为蒙特卡洛(Mnte Carl)方法.
蒙特卡洛方法是在第二次世界大战期间兴起和发展起来的,它的奠基人是冯·诺依曼.这种方法在应用物理、原子能、固体物理、化学、生物、生态学、社会学以及经济行为等领域中都得到了广泛的应用.
环节三:抽象概括,形成概念
例3 从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的.设事件“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件发生的概率.
解:方法1:根据假设,每个人的出生月份在12个月中是等可能的,而且相互之间没有影响,所以观察6个人的出生月份可以看成可重复试验.因此,可以构建如下有放回摸球试验进行模拟:在袋子中装入编号为1,2,…,12的12个球,这些球除编号外没有什么差别.有放回地随机从袋中摸6次球,得到6个数代表6个人的出生月份,这就完成了一次模拟试验.如果这6个数中至少有2个相同,表示事件A发生了.重复以上模拟试验20次,就可以统计出事件A发生的频率.
环节四:辨析理解,深化概念
方法2:利用电子表格软件模拟试验.在Al,Bl,Cl,DI,El,Fl单元格分别输入“=RANDBETWEEN(1,12)”,得到6个数,代表6个人的出生月份,完成一次模拟试验.选中Al,Bl,Cl,DI,El,Fl单元格,将鼠标指向右下角的黑点,按住鼠标左键拖动到第20行,相当于做20次重复试验.统计其中有相同数的频率,得到事件A的概率的估计值.
表10.3-4是20次模拟试验的结果.事件A发生了14次,事件A的概率估计值为0.70,与事件A的概率(约0.78)相差不大.
例4 在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.
分析:奥运会羽毛球比赛规则是3局2胜制,甲获得冠军的结果可能是2:0或2:1.显然,甲连胜2局或在前2局中赢一局输一局,并赢得第3局的概率,与打满3局,甲胜2局或3局的概率相同.每局比赛甲可能胜,也可能负,3局比赛所有可能结果有8种,但是每个结果不是等可能出现的,因此不是古典概型,可以用计算机模拟比赛结果.
解:设事件A =“甲获得冠军”,事件B=“单局比赛甲胜”,则P(B) = 0.6.用计算器或计算机产生1〜5之间的随机数,当出现随机数1,2或3时,表示一局比赛甲获胜,其概率为0.6.由于要比赛3局,所以每3个随机数为一组.例如:产生20组随机数:
环节五:课堂练习,巩固运用
相当于做了20次重复试验,其中事件A发生了13次,对应的数组分别是423,123,423,114,332,152,342,512,125,432,334,151,314,
用随机模拟的方法得到的是20次试验中事件A发生的频率,事件A的概率的精确值为0.648.
整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:①当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;②研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;③当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.
环节六:归纳总结,反思提升
2.用计算机或计算器产生的随机数,是依照确定的算法产生的数,具有周期性(周期很长),这些数有类似随机数的性质,但不是真正意义上的随机数,称为伪随机数.
随机模拟方法是通过将一次试验所有等可能发生的结果数字化,由计算机或计算器产生的随机数,来替代每次试验的结果,其基本思想是用产生整数值随机数的频率估计事件发生的概率,这是一种简单、实用的科研方法,在实践中有着广泛的应用.
1.例如我们要产生0~9之间的随机整数,像彩票摇奖那样,把10个质地和大小相同的号码球放入摇奖器中,充分搅拌后摇出一个球,这个球上的号码就称为随机数。
1 .随机试验中,事件A发生的次数叫频数,频数除以试验的次数叫做事件A发生的频率。2 .频率是通过试验计算出来的结果,是不稳定的,通过很多次试验总结出来的频率可以估计概率。3 .很多事件发生的概率是不知道的,我们在使用其概率时都使用频率代替。4.有些试验的结果可以用随机数模拟产生,随机数模拟省时省力,是预测和决策的重要方法。
环节七:目标检测,作业布置
完成教材:第257页 练习 第1,2题 第257页 习题10.3 第1,3题
1.将一枚质地均匀的硬币连掷4次,设事件A=“恰好两次正面朝上”,(1)直接计算事件A的概率;(2)利用计算器或计算机模拟试验80次,计算事件A发生的频率.
2.盒子中仅有4个白球和5个黑球,从中任意取出一个球.(1)“取出的球是黄球是”什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?(4)设计一个用计算器或计算机模拟上面取球的试验,并模拟100次,估计“取出的球是白球”的概率.
(1)“取出的球是黄球”是不可能事件,概率为0;
(3)“取出的球是白球或黑球”是必然事件,概率为1;
3.(1)掷两枚质地均匀的骰子,计算点数和为7的概率;(2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;(3)所得频率与概率相差大吗?为什么会有这种差异?
(3)重复试验次数为120,不够多,频率与概率可能有比较大的差异.由于频率的不确定性,频率和概率会有一定的差异.
习题10.3(第257页)1.在一个试验中,把一种血清注射到500只豚鼠体内.被注射前,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞;被注射后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有下列类型的细胞的豚鼠被这种血清感染的概率:(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞.
用频率估计概率,得(1) 圆形细胞的豚鼠感染的概率约为0;(2) 椭圆形细胞的豚鼠感染的概率约为0.2;(3) 不规则形状细胞的豚鼠感染的概率约为1.
2.用木块制作的一个四面体,四个面上分别标记1,2,3,4.重复抛掷这个四面体100次,记录:每个面落在桌面上的次数(如下表).如果再抛掷一次,请估计标记3的面落在桌面上的概率.
解:标记3的面落在桌面上的概率的近似值为0.21.
3.在英语中不同字母岀现的频率彼此不同且相差很大,但同一个字母的使用频率相当稳定.有人统计了40多万个单词中5个元音字母的使用频率,结果如下表所示:
(1)从一本英文(小说类)书里随机选一页,统计在这一页里元音字母出现的频率;(2)将你统计得出的频率与上表中的频率进行比较,结果是否比较接近?你认为存在差异的原:因是什么.
(1)略.(提示:可以使用计算机软件进行统计)(2)如果统计的字母个数较少,与表格中的频率差距较大;如果统计的字母个数足够多,与表格中的频率比较接近.差异是由频率的不确定性引起的.
4.人类的四种血型与基因类型的对应为:O型的基因类型为ii,A型的基因类型为ai或aa,B型的基因类型为bi或bb,AB型的基因类型为ab.其中a和b是显性基因,i是隐性基因.一对夫妻的血型一个是A型,一个是B型,请确定他们的子女的血型是O,A,B或AB型的概率,并填写下表:
说法不确切.反例:抛掷一枚硬币,正面超上的概率为0.5.抛掷两次硬币,正面朝上的频率可能为0.5,抛掷99次硬币,正面朝上的频率不可能为0.5.
(2)略.(提示:可以用电子表格软件模拟有放回摸球试验,而用电子表格软件模拟不放回摸球试验较难.)
相关课件
这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率优质ppt课件,共21页。PPT课件主要包含了随机现象,随机试验,样本空间,样本空间的求法,随机事件,事件的应用,巩固练习,课堂小结等内容,欢迎下载使用。
这是一份高中人教A版 (2019)9.1 随机抽样优质课件ppt,共34页。PPT课件主要包含了统计的基础与核心,抽查的必要性,摸球模型,抽样的目的,随机数法,抽签法四步,随机数法三步,随机数的产生方法,数据处理,课堂小结等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册9.1 随机抽样完美版课件ppt,共23页。PPT课件主要包含了分层随机抽样,获得数据的途径,课堂小结等内容,欢迎下载使用。