所属成套资源:2025年高考数学一轮复习(基础版)课时精讲 (2份打包,原卷版+含解析)
- 2025年高考数学一轮复习(基础版)课时精讲第8章 §8.8 直线与圆锥曲线的位置关系(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第9章 §9.1 随机抽样、统计图表(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第9章 §9.3 成对数据的统计分析(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第10章 §10.1 计数原理与排列组合(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第10章 §10.2 二项式定理(2份打包,原卷版+含解析) 试卷 0 次下载
2025年高考数学一轮复习(基础版)课时精讲第9章 §9.2 用样本估计总体(2份打包,原卷版+含解析)
展开这是一份2025年高考数学一轮复习(基础版)课时精讲第9章 §9.2 用样本估计总体(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第9章§92用样本估计总体原卷版doc、2025年高考数学一轮复习基础版课时精讲第9章§92用样本估计总体含解析doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
1.会用统计图表对总体进行估计,会求n个数据的第p百分位数.
2.能用数字特征估计总体集中趋势和总体离散程度.
知识梳理
1.百分位数
一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.
2.平均数、中位数和众数
(1)平均数:eq \x\t(x)=eq \f(1,n)(x1+x2+…+xn).
(2)中位数:将一组数据按从小到大或从大到小的顺序排列,处在最中间的一个数据(当数据个数是奇数时)或最中间两个数据的平均数(当数据个数是偶数时).
(3)众数:一组数据中出现次数最多的数据(即频数最大值所对应的样本数据).
3.方差和标准差
(1)方差:s2=eq \f(1,n)eq \i\su(i=1,n, )(xi-eq \x\t(x))2或eq \f(1,n)eq \i\su(i=1,n,x)eq \\al(2,i)-eq \x\t(x)2.
(2)标准差:s=eq \r(\f(1,n)\i\su(i=1,n, )xi-\x\t(x)2).
4.总体方差和总体标准差
(1)一般式:如果总体中所有个体的变量值分别为Y1,Y2,…,YN,总体平均数为eq \x\t(Y),则总体方差S2=eq \f(1,N)eq \i\su(i=1,N, )(Yi-eq \x\t(Y))2.
(2)加权式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Yk,其中Yi出现的频数为fi(i=1,2,…,k),则总体方差为S2=eq \f(1,N)eq \i\su(i=1,k,f)i(Yi-eq \x\t(Y))2.
常用结论
1.若x1,x2,…,xn的平均数为eq \x\t(x),那么mx1+a,mx2+a,…,mxn+a的平均数为meq \x\t(x)+a.
2.数据x1,x2,…,xn与数据x1′=x1+a,x2′=x2+a,…,xn′=xn+a 的方差相等,即数据经过平移后方差不变.
3.若x1,x2,…,xn的方差为s2,那么ax1+b,ax2+b,…,axn+b的方差为a2s2.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)对一组数据来说,平均数和中位数总是非常接近.( )
(2)方差与标准差具有相同的单位.( )
(3)如果一组数中每个数减去同一个非零常数,则这组数的平均数改变,方差不变.( )
(4)在频率分布直方图中,可以用最高的小长方形底边中点的横坐标作为众数的估计值.( )
2.在下列统计量中,用来描述一组数据离散程度的量是( )
A.平均数 B.众数 C.百分位数 D.标准差
3.甲、乙、丙、丁四人参加射击项目选拔赛,成绩如下,则他们中参加奥运会的最佳人选是______.
4.有一组数据:-1,a,-2,3,4,2,它们的中位数是1,则这组数据的平均数是________.
题型一 样本的数字特征的估计
例1 (1)(多选)某单位为了解该单位党员开展学习党史知识活动情况,随机抽取了30名党员,对他们一周的党史学习时间进行了统计,统计数据如下.则下列对该单位党员一周学习党史时间的叙述,正确的有( )
A.众数是8B.第40百分位数为8
C.平均数是9D.中位数是9
(2)(多选)有一组样本数据x1,x2,…,x6,其中x1是最小值,x6是最大值,则( )
A.x2,x3,x4,x5的平均数等于x1,x2,…,x6的平均数
B.x2,x3,x4,x5的中位数等于x1,x2,…,x6的中位数
C.x2,x3,x4,x5的标准差不小于x1,x2,…,x6的标准差
D.x2,x3,x4,x5的极差不大于x1,x2,…,x6的极差
跟踪训练1 (1)(多选)在某次演讲比赛中,由两个评委小组(分别为专业人士“小组A”和观众代表“小组B”)给参赛选手打分,根据两个评委小组给同一名选手打分的分值绘制成如图所示的折线图,则下列结论正确的是( )
A.小组A打分的分值的平均数为48
B.小组B打分的分值的中位数为66
C.小组A打分的分值的极差大于小组B打分的分值的极差
D.小组A打分的分值的方差小于小组B打分的分值的方差
(2)某小组成员的年龄分布茎叶图如图所示,则该小组成员年龄的第25百分位数是________.
题型二 总体集中趋势的估计
例2 2024年,安徽、甘肃、广西、贵州、黑龙江、吉林、江西七省区作为第四批实施改革的省份进入新高考.2023年10月,进入新高考的七个省份相继公布了高考选考科目的试卷结构.某考试机构举行了新高考适应性考试,在联考结束后,根据联考成绩,考生可了解自己的学习情况,作出升学规划,决定是否参加强基计划.在本次适应性考试中,某学校为了解高三学生的联考情况,随机抽取了100名学生的联考数学成绩作为样本,并按照分数段[50,70),[70,90),[90,110),[110,130),[130,150]分组,绘制了如图所示的频率分布直方图.
(1)求出图中a的值并估计本次考试的及格率(“及格率”指得分为90分及以上的学生所占比例);
(2)估计该校学生联考数学成绩的第80百分位数;
(3)估计该校学生联考数学成绩的众数、平均数.
跟踪训练2 某市共有居民60万人,为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(1)求a的值,并估计该市居民月均用水量不少于3吨的人数;
(2)估计该市居民月均用水量的众数和中位数.
题型三 总体离散程度的估计
例3某厂为比较甲、乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为xi,yi(i=1,2,…,10).试验结果如下:
记zi=xi-yi(i=1,2,…,10),z1,z2,…,z10的样本平均数为eq \x\t(z),样本方差为s2.
(1)求eq \x\t(z),s2;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果eq \x\t(z)≥2eq \r(\f(s2,10)),则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).
跟踪训练3 某果园试种了 A,B两个品种的桃树各10棵,并在桃树成熟挂果后统计了这20棵桃树的产量如下表,记A,B两个品种各10棵产量的平均数分别为eq \x\t(x)和eq \x\t(y),方差分别为seq \\al(2,1)和seq \\al(2,2).
(1)分别求这两个品种产量的极差和中位数;
(2)求eq \x\t(x),eq \x\t(y),seq \\al(2,1),seq \\al(2,2);
(3)果园要大面积种植这两种桃树中的一种,依据以上计算结果分析选种哪个品种更合适,并说明理由.
课时精练
一、单项选择题
1.某鞋店试销一种新款女鞋,销售情况如表:
如果你是鞋店经理,那么下列统计量中对你来说最重要的是( )
A.平均数 B.众数 C.中位数 D.极差
2.某校高三年级一共有1 200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学成绩不小于103分的人数至少为( )
A.220 B.240 C.250 D.300
3.为宣传我国第三艘航空母舰“中国人民解放军海军福建舰”正式服役,增强学生的国防意识,某校组织1 000名学生参加了“逐梦深蓝,山河荣耀”国防知识竞赛,从中随机抽取20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是( )
A.频率分布直方图中a的值为0.004
B.估计这20名学生考试成绩的第60百分位数为75
C.估计这20名学生数学考试成绩的众数为80
D.估计总体中成绩落在[60,70)内的学生人数为150
4.为调查某地区中学生每天睡眠时间,采用按比例分配的分层随机抽样的方法,现抽取初中生800 人,其每天睡眠时间的平均数为9小时,方差为1,抽取高中生1 200人,其每天睡眠时间的平均数为8小时,方差为0.5,则估计该地区中学生每天睡眠时间的方差为( )
A.0.94 B.0.96 C.0.75 D.0.78
5.在统计中,月度同比是指本月和上一年同月相比较的增长率,月度环比是指本月和上一个月相比较的增长率,如图是2022年1月至2022年12月我国居民消费价格月度涨跌幅度统计图,则以下说法错误的是( )
A.在这12个月中,我国居民消费价格月度同比数据的中位数为2.1%
B.在这12个月中,月度环比数据为正数的个数比月度环比数据为负数的个数多3
C.在这12个月中,我国居民消费价格月度同比数据的平均数为1.85%
D.在这12个月中,我国居民消费价格月度环比数据的众数为0.0%
6.四名同学各掷骰子5次,分别记录每次骰子向上的点数,根据四名同学的统计结果,可以判断一定没有出现点数6的是( )
A.平均数为2,方差为2.4 B.中位数为3,方差为1.6
C.中位数为3,众数为2 D.平均数为3,中位数为2
二、多项选择题
7.根据气象学上的标准,如果连续5天的日平均气温都低于10 ℃即为入冬.现将连续5天的日平均气温的记录数据(记录数据都是自然数)作为一组样本,则下列样本中一定符合入冬指标的有( )
A.平均数小于4
B.平均数小于4且极差小于或等于3
C.平均数小于4且标准差小于或等于4
D.众数等于5且极差小于或等于4
8.已知数据x1,x2,…,x9成公差大于0的等差数列,若去掉数据x5,则( )
A.极差不变 B.第25百分位数变大
C.平均数不变 D.方差变小
三、填空题
9.数据68,70,80,88,89,90,96,98的第75百分位数为________.
10.若样本数据x1,x2,…,x10的标准差为3,则数据2x1-1,2x2-1,…,2x10-1的标准差为________.
11.某射击运动员连续射击5次,命中的环数(环数为整数)形成一组数据,这组数据的中位数为8,唯一的众数为9,极差为3,则该组数据的平均数为________.
12.已知一组样本数据共有9个数,其平均数为8,方差为12.将这组样本数据增加一个数据后,所得新的样本数据的平均数为9,则新的样本数据的方差为________.
四、解答题
13.某校为了提高学生对体育运动的兴趣,举办了一场体育知识答题比赛活动,共有1 000名学生参加了此次答题活动.为了解本次比赛的成绩,从中抽取了100名学生的得分(得分均为整数,满分为100分)进行统计,所有学生的得分都不低于60分,将这100名学生的得分进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100](单位:分),得到如下的频率分布直方图.
(1)求图中m的值,并估计此次竞赛活动学生得分的中位数;
(2)根据频率分布直方图,估计此次竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计参赛的学生中有多少名学生获奖.(以每组中点值作为该组数据的代表)
甲
乙
丙
丁
平均环数
8.5
8.8
8.8
8
方差
3.5
3.5
2.1
8.7
党史学习时间(小时)
7
8
9
10
11
党员人数
4
8
7
6
5
试验序号i
1
2
3
4
5
6
7
8
9
10
伸缩率xi
545
533
551
522
575
544
541
568
596
548
伸缩率yi
536
527
543
530
560
533
522
550
576
536
A(单位/kg)
60
50
40
60
70
80
70
30
50
90
B(单位/kg)
40
60
50
80
80
50
60
20
80
70
鞋号
34
35
36
37
38
39
40
41
日销量/双
2
5
9
16
9
5
3
2
相关试卷
这是一份2025年高考数学一轮复习(基础版)课时精讲第8章 §8.5 椭 圆(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第8章§85椭圆原卷版doc、2025年高考数学一轮复习基础版课时精讲第8章§85椭圆含解析doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份2025年高考数学一轮复习(基础版)课时精讲第8章 §8.3 圆的方程(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第8章§83圆的方程原卷版doc、2025年高考数学一轮复习基础版课时精讲第8章§83圆的方程含解析doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份2025年高考数学一轮复习(基础版)课时精讲第6章 §6.4 数列求和(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第6章§64数列求和原卷版doc、2025年高考数学一轮复习基础版课时精讲第6章§64数列求和含解析doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。