所属成套资源:2025年高考数学一轮复习(基础版)课时精讲 (2份打包,原卷版+含解析)
- 2025年高考数学一轮复习(基础版)课时精讲第1章 §1.1 集合(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第1章 §1.3 等式性质与不等式性质(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第1章 §1.4 基本不等式(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第1章 §1.5 一元二次方程、不等式(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第2章 §2.1 函数的概念及其表示(2份打包,原卷版+含解析) 试卷 1 次下载
2025年高考数学一轮复习(基础版)课时精讲第1章 §1.2 常用逻辑用语(2份打包,原卷版+含解析)
展开这是一份2025年高考数学一轮复习(基础版)课时精讲第1章 §1.2 常用逻辑用语(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第1章§12常用逻辑用语原卷版doc、2025年高考数学一轮复习基础版课时精讲第1章§12常用逻辑用语含解析doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
1.理解充分条件、必要条件、充要条件的意义;理解判定定理与充分条件、性质定理与必要条件、数学定义与充要条件的关系.
2.理解全称量词和存在量词的意义,能正确对两种命题进行否定.
知识梳理
1.充分条件、必要条件与充要条件的概念
2.全称量词与存在量词
(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.
(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.
3.全称量词命题和存在量词命题
常用结论
1.充分、必要条件与对应集合之间的关系
设A={x|p(x)},B={x|q(x)}.
(1)若p是q的充分条件,则A⊆B;
(2)若p是q的充分不必要条件,则A⫋B;
(3)若p是q的必要不充分条件,则B⫋A;
(4)若p是q的充要条件,则A=B.
2.含有一个量词命题的否定规律是“改变量词,否定结论”.
3.命题p与p的否定的真假性相反.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)当p是q的充分条件时,q是p的必要条件.( √ )
(2)“三角形的内角和为180°”是全称量词命题.( √ )
(3)“x>1”是“x>0”的充分不必要条件.( √ )
(4)命题“∃x∈R,sin2eq \f(x,2)+cs2eq \f(x,2)=eq \f(1,2)”是真命题.( × )
2.(多选)已知命题p:∀x∈R,x+2≤0,则下列说法正确的是( )
A.p是真命题
B.¬p:∀x∈R,x+2>0
C.¬p是真命题
D.¬p:∃x∈R,x+2>0
答案为:CD
解析:当x=0时,x+2≤0不成立,故p是假命题,故A错误;由含量词命题的否定可知,p:∀x∈R,x+2≤0的否定为¬p:∃x∈R,x+2>0,故D正确,B错误;¬p是真命题,故C正确.
3.设x>0,y>0,则“x2>y2”是“x>y”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案为:C
4.已知A=(-∞,a],B=(-∞,3),且x∈A是x∈B的充分不必要条件,则a的取值范围为________.
答案为:(-∞,3)
解析:由题意知,x∈A⇒x∈B,x∈B⇏x∈A,即AB,所以a<3.
题型一 充分、必要条件的判定
例1 (1已知向量n为平面α的一个法向量,向量m为直线l的一个方向向量,则m∥n是l⊥α的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案为:C
解析:当m∥n时,l⊥α,当l⊥α时,m∥n,综上所述,m∥n是l⊥α的充要条件.
(2)在等比数列{an}中,“a1>0,且公比q>1”是“{an}为递增数列”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案为:A
解析:当a1>0,且q>1时,有an+1-an=a1qn-a1qn-1=a1qn-1(q-1)>0,所以an+1>an(n∈N*),即{an}为递增数列;当{an}为递增数列时,即对一切n∈N*,有an+1>an恒成立,所以an+1-an=a1qn-1(q-1)>0,但a1<0且0
0,且q>1.则“a1>0,且公比q>1”是“{an}为递增数列”的充分不必要条件.
思维升华 充分、必要条件的三种判定方法
(1)定义法:根据p⇒q,q⇒p是否成立进行判断.
(2)集合法:根据p,q成立对应的集合之间的包含关系进行判断.
(3)等价转化法:对所给题目的条件进行一系列的等价转化,直到转化成容易判断充分、必要条件是否成立为止.
跟踪训练1 (1)已知函数f(x)=cs(2x+φ),则“φ=eq \f(π,2)”是“f(x)是奇函数”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案为:A
解析:f(x)是奇函数等价于cs(-2x+φ)=-cs(2x+φ),即cs(-2x+φ)=cs(π-2x-φ),故-2x+φ=π-2x-φ+2kπ,k∈Z,所以φ=eq \f(π,2)+kπ,k∈Z.则“φ=eq \f(π,2)”是“f(x)是奇函数”的充分不必要条件.
题型二 充分、必要条件的应用
例2 在①“x∈A”是“x∈B”的充分条件;②“x∈∁RA”是“x∈∁RB”的必要条件这两个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.
问题:已知集合A={x|a≤x≤a+2},B={x|(x+1)(x-3)<0}.
(1)当a=2时,求A∩B;
(2)若________,求实数a的取值范围.
注:如果选择多个条件分别解答,按第一个解答计分.
解:(1)由(x+1)(x-3)<0,解得-1当a=2时,A={x|2≤x≤4},所以A∩B={x|2≤x<3}.
(2)选①“x∈A”是“x∈B”的充分条件,则A⊆B,所以eq \b\lc\{\rc\ (\a\vs4\al\c1(a>-1,,a+2<3,))解得-1选②“x∈∁RA”是“x∈∁RB”的必要条件,则A⊆B,所以eq \b\lc\{\rc\ (\a\vs4\al\c1(a>-1,,a+2<3,))解得-1充分不必要条件的等价形式
p是q的充分不必要条件,等价于¬q是¬p的充分不必要条件.
典例 已知命题p:|x|≤1,q:x<a,若¬q是¬p的充分不必要条件,则实数a的取值范围为_____________.
答案为:(1,+∞)
解析:由|x|≤1,即-1≤x≤1,由题意知p是q的充分不必要条件,所以a>1.
思维升华
求参数问题的解题策略
(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.
(2)要注意区间端点值的检验.
跟踪训练2 从①“充分不必要条件”,②“必要不充分条件”这两个条件中任选一个,补充到本题第(2)问的横线处,并解答下列问题:已知集合A={x|eq \f(1,4)≤2x≤32},B={x|x2-4x+4-m2≤0,m∈R}.
(1)若m=3,求A∪B;
(2)若存在正实数m,使得“x∈A”是“x∈B”成立的________,求正实数m的取值范围.
注:如果选择多个条件分别解答,按第一个解答计分.
解:(1)依题意,得2-2≤2x≤25,解得-2≤x≤5,即A={x|-2≤x≤5},
当m=3时,解不等式x2-4x-5≤0,得-1≤x≤5,即B={x|-1≤x≤5},
所以A∪B={x|-2≤x≤5}.
(2)选①,由(1)知,A={x|-2≤x≤5},m>0,解不等式x2-4x+4-m2≤0,
得2-m≤x≤2+m,即B={x|2-m≤x≤2+m},
因为“x∈A”是“x∈B”成立的充分不必要条件,则有A⫋B,
于是得eq \b\lc\{\rc\ (\a\vs4\al\c1(2-m<-2,,2+m≥5))或eq \b\lc\{\rc\ (\a\vs4\al\c1(2-m≤-2,,2+m>5,))解得m>4或m≥4,即有m≥4,
所以正实数m的取值范围是m≥4.
选②,由(1)知,A={x|-2≤x≤5},m>0,
解不等式x2-4x+4-m2≤0,得2-m≤x≤2+m,即B={x|2-m≤x≤2+m},
因为“x∈A”是“x∈B”成立的必要不充分条件,则有B⫋A,
于是得-2<2-m<2+m≤5或-2≤2-m<2+m<5,解得0所以正实数m的取值范围是0 题型三 全称量词与存在量词
命题点1 含量词的命题的否定
例3 (1)(多选)下列说法正确的是( )
A.“正方形是菱形”是全称量词命题
B.∃x∈R,exC.命题“∃x∈R,x2-2x+3=0”的否定为“∀x∈R,x2-2x+3≠0”
D.命题“∀x>1,都有2x+1>5”的否定为“∃x≤1,使得2x+1≤5”
答案为:ABC
解析:对于A,“正方形是菱形”等价于“所有的正方形都是菱形”,是全称量词命题,故A正确;
对于B,当x=1时,e对于C,命题“∃x∈R,x2-2x+3=0”的否定为“∀x∈R,x2-2x+3≠0”,故C正确;
对于D,命题“∀x>1,都有2x+1>5”的否定为“∃x>1,使得2x+1≤5”,故D不正确.
(2)写出“所有实数都不是无理数”的否定形式:________________________.
答案为:至少有一个实数是无理数
命题点2 含量词的命题的真假判断
例4 (多选)下列命题中的真命题是( )
A.∀x∈R,2x-1>0 B.∀x∈N*,(x-1)2>0
C.∃x∈R,lg x<1 D.∃x∈R,tan x=2
答案为:ACD
解析:指数函数的值域为(0,+∞),所以∀x∈R,2x-1>0,故A正确;
当x=1时,(x-1)2=0,所以∀x∈N*,(x-1)2>0是假命题,故B错误;
当x=1时,lg x=0<1,所以∃x∈R,lg x<1,故C正确;
函数y=tan x的值域为R,所以∃x∈R,tan x=2,故D正确.
命题点3 含量词的命题的应用
例5 (1)若命题“∀x∈[-1,2],x2+1≥m”是真命题,则实数m的取值范围是( )
A.(-∞,0] B.(-∞,1] C.(-∞,2] D.(-∞,5]
答案为:B
解析:由“∀x∈[-1,2],x2+1≥m”是真命题可知,不等式m≤x2+1,对∀x∈[-1,2]恒成立,因此只需m≤(x2+1)min,x∈[-1,2],易知函数y=x2+1在x∈[-1,2]上的最小值为1,所以m≤1.即实数m的取值范围是(-∞,1].
(2)(多选)命题p:∃x∈R,x2+2x+2-m<0为假命题,则实数m的取值可以是( )
A.-1 B.0 C.1 D.2
答案为:ABC
解析:若命题p:∃x∈R,x2+2x+2-m<0为真命题,则Δ=22-4(2-m)=4m-4>0,解得m>1,所以当命题p:∃x∈R,x2+2x+2-m<0为假命题时,m≤1,符合条件的为A,B,C选项.
思维升华 含量词命题的解题策略
(1)判定全称量词命题是真命题,需证明都成立;要判定存在量词命题是真命题,只要找到一个成立即可.当一个命题的真假不易判定时,可以先判断其否定的真假.
(2)由命题真假求参数的范围,一是直接由命题的真假求参数的范围;二是可利用等价命题求参数的范围.
跟踪训练3 (1)下列命题为真命题的是( )
A.任意两个等腰三角形都相似
B.所有的梯形都是等腰梯形
C.∀x∈R,x+|x|≥0
D.∃x∈R,x2-x+1=0
答案为:C
解析:对于A,任意两个等腰三角形不一定相似,故A错误;对于B,所有的梯形都是等腰梯形是假命题,故B错误;对于C,因为∀x∈R,|x|≥-x,即x+|x|≥0,故C正确;对于D,因为∀x∈R,x2-x+1=eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,2)))2+eq \f(3,4)≥eq \f(3,4)>0,故D错误.
(2)(多选)已知命题p:∀x∈[0,1],不等式2x-2≥m2-3m恒成立,命题q:∃x∈[1,3],不等式x2-ax+4≤0,则下列说法正确的是( )
A.命题p的否定是“∃x∈[0,1],不等式2x-2B.命题q的否定是“∀x∈[1,3],不等式x2-ax+4≥0”
C.当命题p为真命题时,1≤m≤2
D.当命题q为假命题时,a<4
答案为:ACD
解析:命题p的否定是“∃x∈[0,1],不等式2x-20”,故B错误;若命题p为真命题,则当x∈[0,1]时,(2x-2)min≥m2-3m,即m2-3m+2≤0,解得1≤m≤2,故C正确;若命题q为假命题,则∀x∈[1,3],不等式x2-ax+4>0为真命题,即a 课时精练
一、单项选择题
1.命题“∃x>0,sin x-x≤0”的否定为( )
A.∀x≤0,sin x-x>0 B.∃x>0,sin x-x≤0
C.∀x>0,sin x-x>0 D.∃x≤0,sin x-x>0
答案为:C
解析:由题意知命题“∃x>0,sin x-x≤0”为存在量词命题,其否定为全称量词命题,即∀x>0,sin x-x>0.
2.下列命题中,p是q的充分条件的是( )
A.p:ab≠0,q:a≠0
B.p:a2+b2≥0,q:a≥0且b≥0
C.p:x2>1,q:x>1
D.p:a>b,q:eq \r(a)>eq \r(b)
答案为:A
解析:对于A,ab≠0⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(a≠0,,b≠0))⇒a≠0,故p是q的充分条件;对于B,a2+b2≥0⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(a∈R,,b∈R))⇏a≥0且b≥0,故p不是q的充分条件;对于C,x2>1⇔x>1或x<-1⇏x>1,故p不是q的充分条件;对于D,当a>b时,若beq \r(b),故p不是q的充分条件.
3.设λ∈R,则“λ=1”是“直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案为:A
解析:若直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行,则3(1-λ)-λ(λ-1)=0,解得λ=1或λ=-3,经检验,当λ=1或λ=-3时,两直线平行.即“λ=1”是“直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行”的充分不必要条件.
4.已知p:eq \f(1,x)>1,q:x>m,若p是q的充分条件,则实数m的取值范围是( )
A.[0,+∞) B.[1,+∞) C.(-∞,0] D.(-∞,1]
答案为:C
解析:由eq \f(1,x)>1可得x(x-1)<0,解得0m},若p是q的充分条件,
则A是B的子集,所以m≤0,所以实数m的取值范围是(-∞,0].
5.下列说法正确的是( )
A.“对任意一个无理数x,x2也是无理数”是真命题
B.“xy>0”是“x+y>0”的充要条件
C.命题“∃x∈R,使得x2+1>0”的否定是“∀x∈R,x2+1<0”
D.若“1答案为:D
解析:eq \r(2)是无理数,x2=2是有理数,A错误;当x=-2,y=-1时,xy>0,但x+y=-3<0,不是充要条件,B错误;命题“∃x∈R,使得x2+1>0”的否定是“∀x∈R,x2+1≤0”,C错误;“16.设p:关于x的不等式x2+ax+1>0对一切x∈R恒成立,q:对数函数y=lg(4-3a)x在(0,+∞)上单调递减,那么p是q的( )
A.充分不必要条件 B.充要条件
C.必要不充分条件 D.既不充分也不必要条件
答案为:C
解析:若关于x的不等式x2+ax+1>0对一切x∈R恒成立,则Δ=a2-4<0,即-27.已知命题p:∃x∈R,ax2+2ax-4≥0为假命题,则实数a的取值范围是( )
A.-4答案为:C
解析:命题p:∃x∈R,ax2+2ax-4≥0为假命题,即命题¬p:∀x∈R,ax2+2ax-4<0为真命题,当a=0时,-4<0恒成立,符合题意;当a≠0时,则a<0且Δ=(2a)2+16a<0,即-48.记Sn为数列{an}的前n项和,设甲:{an}为等差数列;乙:{eq \f(Sn,n)}为等差数列,则( )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
答案为:C
解析:方法一 甲:{an}为等差数列,设其首项为a1,公差为d,则Sn=na1+eq \f(nn-1,2)d,eq \f(Sn,n)=a1+eq \f(n-1,2)d=eq \f(d,2)n+a1-eq \f(d,2),eq \f(Sn+1,n+1)-eq \f(Sn,n)=eq \f(d,2),因此{eq \f(Sn,n)}为等差数列,则甲是乙的充分条件;反之,乙:{eq \f(Sn,n)}为等差数列,即eq \f(Sn+1,n+1)-eq \f(Sn,n)=eq \f(nSn+1-n+1Sn,nn+1)=eq \f(nan+1-Sn,nn+1)为常数,设为t,即eq \f(nan+1-Sn,nn+1)=t,则Sn=nan+1-t·n(n+1),有Sn-1=(n-1)an-t·n(n-1),n≥2,
两式相减得an=nan+1-(n-1)an-2tn,即an+1-an=2t,对n=1也成立,
因此{an}为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.
方法二 甲:{an}为等差数列,设数列{an}的首项为a1,公差为d,
即Sn=na1+eq \f(nn-1,2)d,则eq \f(Sn,n)=a1+eq \f(n-1,2)d=eq \f(d,2)n+a1-eq \f(d,2),因此{eq \f(Sn,n)}为等差数列,即甲是乙的充分条件;
反之,乙:{eq \f(Sn,n)}为等差数列,设数列{eq \f(Sn,n)}的公差为D,则eq \f(Sn+1,n+1)-eq \f(Sn,n)=D,eq \f(Sn,n)=S1+(n-1)D,
即Sn=nS1+n(n-1)D,当n≥2时,Sn-1=(n-1)S1+(n-1)(n-2)D,
上边两式相减得Sn-Sn-1=S1+2(n-1)D,所以an=a1+2(n-1)D,
当n=1时,上式成立,又an+1-an=a1+2nD-[a1+2(n-1)D]=2D为常数,
因此{an}为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.
二、多项选择题
9.下列命题是真命题的是( )
A.∃a∈R,使函数y=2x+a·2-x在R上为偶函数
B.∀x∈R,函数y=sin x+cs x+eq \r(2)的值恒为正数
C.∃x∈R,2x<x2
D.∀x∈(0,+∞),(eq \f(1,3))x> SKIPIF 1 < 0
答案为:AC
解析:当a=1时,y=2x+2-x为偶函数,故A为真命题;y=sin x+cs x+eq \r(2)=eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))+eq \r(2),当sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))=-1时,y=0,故B为假命题;当x∈(2,4)时,2x<x2,故C为真命题;当x=eq \f(1,3)时, SKIPIF 1 < 0 ∈(0,1), SKIPIF 1 < 0 =1,∴ SKIPIF 1 < 0 ,故D为假命题.
10.下列命题中正确的是( )
A.“A∪B=A”是“B⊆A”的充分不必要条件
B.“方程x2-(m-3)x+m=0有一正一负根”的充要条件是“m<0”
C.“幂函数y= SKIPIF 1 < 0 为反比例函数”的充要条件是“m=0”
D.“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是“1≤m≤3”
答案为:BCD
解析:对于A,由A∪B=A可得B⊆A,故充分性成立,由B⊆A可得A∪B=A,故必要性成立,所以“A∪B=A”是“B⊆A”的充要条件,故A错误;
对于B,方程x2-(m-3)x+m=0有一正一负根,设为x1,x2,则eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ=m-32-4m>0,,x1x2=m<0,))解得m<0,满足必要性,
当m<0时,Δ=(m-3)2-4m>0,x1x2=m<0,则方程x2-(m-3)x+m=0有一正一负根,满足充分性,
所以“方程x2-(m-3)x+m=0有一正一负根”的充要条件是“m<0”,故B正确;
对于C,若幂函数y= SKIPIF 1 < 0 为反比例函数,则eq \b\lc\{\rc\ (\a\vs4\al\c1(m+1=1,,m2+m-1=-1,))解得m=0,满足必要性,
当m=0时,函数y=x-1为幂函数,也为反比例函数,满足充分性,
所以“幂函数y= SKIPIF 1 < 0 为反比例函数”的充要条件是“m=0”,故C正确;
对于D,若函数f(x)=-x2+2mx在区间[1,3]上不单调,则1所以“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是“1≤m≤3”,故D正确.
三、填空题
11.在△ABC中,“∠A=∠B”是“sin A=sin B”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)
答案为:充要
解析:在△ABC中,∠A=∠B⇔a=b⇔sin A=sin B,故“∠A=∠B”是“sin A=sin B”的充要条件.
12.设p:4x-3<1,q:x-2a-1<0,若p是q的充分不必要条件,则实数a的取值范围是________.
答案为:(0,+∞)
解析:由4x-3<1,解得x<1,即p:x<1,记A={x|x<1};由x-(2a+1)<0,解得x<2a+1,即q: x<2a+1,记B={x|x<2a+1},因为p是q的充分不必要条件,所以AB,即2a+1>1,解得a>0,
所以a的取值范围是(0,+∞).
13.已知函数f(x)=x+eq \f(4,x),g(x)=2x+a,若∀x1∈[eq \f(1,2),1],∃x2∈[2,3],使得f(x1)≤g(x2),则实数a的取值范围是________.
答案为:[eq \f(1,2),+∞).
解析:依题意知f(x)max≤g(x)max.∵f(x)=x+eq \f(4,x)在[eq \f(1,2),1]上单调递减,∴f(x)max=f (eq \f(1,2))=eq \f(17,2).
又g(x)=2x+a在[2,3]上单调递增,∴g(x)max=8+a,因此eq \f(17,2)≤8+a,则a≥eq \f(1,2).若p⇒q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件
p⇒q且q⇏p
p是q的必要不充分条件
p⇏q且q⇒p
p是q的充要条件
p⇔q
p是q的既不充分也不必要条件
p⇏q且q⇏p
名称
全称量词命题
存在量词命题
结构
对M中任意一个x,p(x)成立
存在M中的元素x,p(x)成立
简记
∀x∈M,p(x)
∃x∈M,p(x)
否定
∃x∈M,¬p(x)
∀x∈M,¬p(x)
相关试卷
这是一份高考数学大一轮复习精讲精练(新高考地区)1.2逻辑用语与充分、必要条件(精讲)(原卷版+解析),共22页。
这是一份(新高考)高考数学一轮复习学案+巩固提升练习1.2《常用逻辑用语》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习12《常用逻辑用语》原卷版doc、新高考高考数学一轮复习讲义+巩固练习12《常用逻辑用语》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习12《常用逻辑用语》教师版doc、新高考高考数学一轮复习讲义+巩固练习12《常用逻辑用语》教师版pdf等4份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份2024年高考数学一轮复习高频考点精讲精练(新教材新高考) 第02讲 常用逻辑用语 (高频精讲)(原卷版+解析版),共43页。试卷主要包含了充分条件,全称量词与存在量词等内容,欢迎下载使用。