所属成套资源:三年(2022-2024)高考数学真题分类汇编(全国通用)
- 专题08 解三角形(六大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用) 试卷 0 次下载
- 专题09 平面向量(六大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用) 试卷 0 次下载
- 专题11 不等式、推理与证明、复数、算法初步(九大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用) 试卷 0 次下载
- 专题12 概率与统计(文)(六大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用) 试卷 0 次下载
- 专题12 概率与统计(理)(十大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用) 试卷 0 次下载
专题10 数列(九大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用)
展开
这是一份专题10 数列(九大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用),文件包含专题10数列九大考点原卷版docx、专题10数列九大考点解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
考点1:等差数列基本量运算
1.(2023年新课标全国Ⅰ卷数学真题)设等差数列的公差为,且.令,记分别为数列的前项和.
(1)若,求的通项公式;
(2)若为等差数列,且,求.
【解析】(1),,解得,
,
又,
,
即,解得或(舍去),
.
(2)为等差数列,
,即,
,即,解得或,
,,
又,由等差数列性质知,,即,
,即,解得或(舍去)
当时,,解得,与矛盾,无解;
当时,,解得.
综上,.
2.(2022年高考全国乙卷数学(文)真题)记为等差数列的前n项和.若,则公差 .
【答案】2
【解析】由可得,化简得,
即,解得.
故答案为:2.
3.(2023年高考全国甲卷数学(文)真题)记为等差数列的前项和.若,则( )
A.25B.22C.20D.15
【答案】C
【解析】方法一:设等差数列的公差为,首项为,依题意可得,
,即,
又,解得:,
所以.
故选:C.
方法二:,,所以,,
从而,于是,
所以.
故选:C.
4.(2023年高考全国乙卷数学(理)真题)已知等差数列的公差为,集合,若,则( )
A.-1B.C.0D.
【答案】B
【解析】依题意,等差数列中,,
显然函数的周期为3,而,即最多3个不同取值,又,
则在中,或,
于是有,即有,解得,
所以,.
故选:B
5.(2024年高考全国甲卷数学(文)真题)已知等差数列的前项和为,若,则( )
A.B.C.1D.
【答案】D
【解析】方法一:利用等差数列的基本量
由,根据等差数列的求和公式,,
又.
故选:D
方法二:利用等差数列的性质
根据等差数列的性质,,由,根据等差数列的求和公式,
,故.
故选:D
方法三:特殊值法
不妨取等差数列公差,则,则.
故选:D
6.(2024年高考全国甲卷数学(理)真题)记为等差数列的前项和,已知,,则( )
A.B.C.D.
【答案】B
【解析】由,则,
则等差数列的公差,故.
故选:B.
7.(2023年高考全国乙卷数学(文)真题)记为等差数列的前项和,已知.
(1)求的通项公式;
(2)求数列的前项和.
【解析】(1)设等差数列的公差为,
由题意可得,即,解得,
所以,
(2)因为,
令,解得,且,
当时,则,可得;
当时,则,可得
;
综上所述:.
8.(2024年新课标全国Ⅱ卷数学真题)记为等差数列的前n项和,若,,则 .
【答案】95
【解析】因为数列为等差数列,则由题意得,解得,
则.
故答案为:.
9.(2023年新课标全国Ⅰ卷数学真题)记为数列的前项和,设甲:为等差数列;乙:为等差数列,则( )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
【答案】C
【解析】方法1,甲:为等差数列,设其首项为,公差为,
则,
因此为等差数列,则甲是乙的充分条件;
反之,乙:为等差数列,即为常数,设为,
即,则,有,
两式相减得:,即,对也成立,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件,C正确.
方法2,甲:为等差数列,设数列的首项,公差为,即,
则,因此为等差数列,即甲是乙的充分条件;
反之,乙:为等差数列,即,
即,,
当时,上两式相减得:,当时,上式成立,
于是,又为常数,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
故选:C
考点2:等比数列基本量运算
10.(2023年新课标全国Ⅱ卷数学真题)记为等比数列的前n项和,若,,则( ).
A.120B.85C.D.
【答案】C
【解析】方法一:设等比数列的公比为,首项为,
若,则,与题意不符,所以;
若,则,与题意不符,所以;
由,可得,,①,
由①可得,,解得:,
所以.
故选:C.
方法二:设等比数列的公比为,
因为,,所以,否则,
从而,成等比数列,
所以有,,解得:或,
当时,,即为,
易知,,即;
当时,,
与矛盾,舍去.
故选:C.
11.(2023年高考全国甲卷数学(理)真题)设等比数列的各项均为正数,前n项和,若,,则( )
A.B.C.15D.40
【答案】C
【解析】由题知,
即,即,即.
由题知,所以.
所以.
故选:C.
12.(2023年天津高考数学真题)已知数列的前n项和为,若,则( )
A.16B.32C.54D.162
【答案】C
【解析】当时,,所以,即,
当时,,
所以数列是首项为2,公比为3的等比数列,
则.
故选:C.
13.(2022年高考全国乙卷数学(理)真题)已知等比数列的前3项和为168,,则( )
A.14B.12C.6D.3
【答案】D
【解析】设等比数列的公比为,
若,则,与题意矛盾,
所以,
则,解得,
所以.
故选:D.
14.(2023年高考全国甲卷数学(文)真题)记为等比数列的前项和.若,则的公比为 .
【答案】
【解析】若,
则由得,则,不合题意.
所以.
当时,因为,
所以,
即,即,即,
解得.
故答案为:
15.(2023年高考全国乙卷数学(理)真题)已知为等比数列,,,则 .
【答案】
【解析】设的公比为,则,显然,
则,即,则,因为,则,
则,则,则,
故答案为:.
考点3:数列的实际应用
16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为 ,且斛量器的高为,则斗量器的高为 ,升量器的高为 .
【答案】 23 57.5/
【解析】设升量器的高为,斗量器的高为(单位都是),则,
故,.
故答案为:.
17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列,该数列的前3项成等差数列,后7项成等比数列,且,则 ;数列所有项的和为 .
【答案】 48 384
【解析】方法一:设前3项的公差为,后7项公比为,
则,且,可得,
则,即,可得,
空1:可得,
空2:
方法二:空1:因为为等比数列,则,
且,所以;
又因为,则;
空2:设后7项公比为,则,解得,
可得,所以.
故答案为:48;384.
18.(2022年新高考全国II卷数学真题)图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为.已知成公差为0.1的等差数列,且直线的斜率为0.725,则( )
A.0.75B.0.8C.0.85D.0.9
【答案】D
【解析】设,则,
依题意,有,且,
所以,故,
故选:D
19.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则( )
A.B.C.D.
【答案】D
【解析】[方法一]:常规解法
因为,
所以,,得到,
同理,可得,
又因为,
故,;
以此类推,可得,,故A错误;
,故B错误;
,得,故C错误;
,得,故D正确.
[方法二]:特值法
不妨设则
故D正确.
考点4:数列的最值问题
20.(2022年高考全国甲卷数学(理)真题)记为数列的前n项和.已知.
(1)证明:是等差数列;
(2)若成等比数列,求的最小值.
【解析】(1)因为,即①,
当时,②,
①②得,,
即,
即,所以,且,
所以是以为公差的等差数列.
(2)[方法一]:二次函数的性质
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,所以,
所以,当或时,.
[方法二]:【最优解】邻项变号法
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,即有.
则当或时,.
【整体点评】(2)法一:根据二次函数的性质求出的最小值,适用于可以求出的表达式;
法二:根据邻项变号法求最值,计算量小,是该题的最优解.
21.(2022年新高考北京数学高考真题)设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的( )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【解析】设等差数列的公差为,则,记为不超过的最大整数.
若为单调递增数列,则,
若,则当时,;若,则,
由可得,取,则当时,,
所以,“是递增数列”“存在正整数,当时,”;
若存在正整数,当时,,取且,,
假设,令可得,且,
当时,,与题设矛盾,假设不成立,则,即数列是递增数列.
所以,“是递增数列”“存在正整数,当时,”.
所以,“是递增数列”是“存在正整数,当时,”的充分必要条件.
故选:C.
考点5:数列的递推问题(蛛网图问题)
22.(2024年高考全国甲卷数学(文)真题)已知等比数列的前项和为,且.
(1)求的通项公式;
(2)求数列的前n项和.
【解析】(1)因为,故,
所以即故等比数列的公比为,
故,故,故.
(2)由等比数列求和公式得,
所以数列的前n项和
.
23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线,点在上,为常数,.按照如下方式依次构造点:过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
(1)若,求;
(2)证明:数列是公比为的等比数列;
(3)设为的面积,证明:对任意正整数,.
【解析】(1)
由已知有,故的方程为.
当时,过且斜率为的直线为,与联立得到.
解得或,所以该直线与的不同于的交点为,该点显然在的左支上.
故,从而,.
(2)由于过且斜率为的直线为,与联立,得到方程.
展开即得,由于已经是直线和的公共点,故方程必有一根.
从而根据韦达定理,另一根,相应的.
所以该直线与的不同于的交点为,而注意到的横坐标亦可通过韦达定理表示为,故一定在的左支上.
所以.
这就得到,.
所以
.
再由,就知道,所以数列是公比为的等比数列.
(3)方法一:先证明一个结论:对平面上三个点,若,,则.(若在同一条直线上,约定)
证明:
.
证毕,回到原题.
由于上一小问已经得到,,
故.
再由,就知道,所以数列是公比为的等比数列.
所以对任意的正整数,都有
.
而又有,,
故利用前面已经证明的结论即得
.
这就表明的取值是与无关的定值,所以.
方法二:由于上一小问已经得到,,
故.
再由,就知道,所以数列是公比为的等比数列.
所以对任意的正整数,都有
.
这就得到,
以及.
两式相减,即得.
移项得到.
故.
而,.
所以和平行,这就得到,即.
24.(2022年新高考浙江数学高考真题)已知数列满足,则( )
A.B.C.D.
【答案】B
【解析】∵,易得,依次类推可得
由题意,,即,
∴,
即,,,…,,
累加可得,即,
∴,即,,
又,
∴,,,…,,
累加可得,
∴,
即,∴,即;
综上:.
故选:B.
25.(2023年北京高考数学真题)已知数列满足,则( )
A.当时,为递减数列,且存在常数,使得恒成立
B.当时,为递增数列,且存在常数,使得恒成立
C.当时,为递减数列,且存在常数,使得恒成立
D.当时,为递增数列,且存在常数,使得恒成立
【答案】B
【解析】法1:因为,故,
对于A ,若,可用数学归纳法证明:即,
证明:当时,,此时不等关系成立;
设当时,成立,
则,故成立,
由数学归纳法可得成立.
而,
,,故,故,
故为减数列,注意
故,结合,
所以,故,故,
若存在常数,使得恒成立,则,
故,故,故恒成立仅对部分成立,
故A不成立.
对于B,若可用数学归纳法证明:即,
证明:当时,,此时不等关系成立;
设当时,成立,
则,故成立即
由数学归纳法可得成立.
而,
,,故,故,故为增数列,
若,则恒成立,故B正确.
对于C,当时, 可用数学归纳法证明:即,
证明:当时,,此时不等关系成立;
设当时,成立,
则,故成立即
由数学归纳法可得成立.
而,故,故为减数列,
又,结合可得:,所以,
若,若存在常数,使得恒成立,
则恒成立,故,的个数有限,矛盾,故C错误.
对于D,当时, 可用数学归纳法证明:即,
证明:当时,,此时不等关系成立;
设当时,成立,
则,故成立
由数学归纳法可得成立.
而,故,故为增数列,
又,结合可得:,所以,
若存在常数,使得恒成立,则,
故,故,这与n的个数有限矛盾,故D错误.
故选:B.
法2:因为,
令,则,
令,得或;
令,得;
所以在和上单调递增,在上单调递减,
令,则,即,解得或或,
注意到,,
所以结合的单调性可知在和上,在和上,
对于A,因为,则,
当时,,,则,
假设当时,,
当时,,则,
综上:,即,
因为在上,所以,则为递减数列,
因为,
令,则,
因为开口向上,对称轴为,
所以在上单调递减,故,
所以在上单调递增,故,
故,即,
假设存在常数,使得恒成立,
取,其中,且,
因为,所以,
上式相加得,,
则,与恒成立矛盾,故A错误;
对于B,因为,
当时,,,
假设当时,,
当时,因为,所以,则,
所以,
又当时,,即,
假设当时,,
当时,因为,所以,则,
所以,
综上:,
因为在上,所以,所以为递增数列,
此时,取,满足题意,故B正确;
对于C,因为,则,
注意到当时,,,
猜想当时,,
当与时,与满足,
假设当时,,
当时,所以,
综上:,
易知,则,故,
所以,
因为在上,所以,则为递减数列,
假设存在常数,使得恒成立,
记,取,其中,
则,
故,所以,即,
所以,故不恒成立,故C错误;
对于D,因为,
当时,,则,
假设当时,,
当时,,则,
综上:,
因为在上,所以,所以为递增数列,
因为,
令,则,
因为开口向上,对称轴为,
所以在上单调递增,故,
所以,
故,即,
假设存在常数,使得恒成立,
取,其中,且,
因为,所以,
上式相加得,,
则,与恒成立矛盾,故D错误.
故选:B.
考点6:等差数列与等比数列的综合应用
26.(2022年新高考浙江数学高考真题)已知等差数列的首项,公差.记的前n项和为.
(1)若,求;
(2)若对于每个,存在实数,使成等比数列,求d的取值范围.
【解析】(1)因为,
所以,
所以,又,
所以,
所以,
所以,
(2)因为,,成等比数列,
所以,
,
,
由已知方程的判别式大于等于0,
所以,
所以对于任意的恒成立,
所以对于任意的恒成立,
当时,,
当时,由,可得
当时,,
又
所以
27.(2022年新高考全国II卷数学真题)已知为等差数列,是公比为2的等比数列,且.
(1)证明:;
(2)求集合中元素个数.
【解析】(1)设数列的公差为,所以,,即可解得,,所以原命题得证.
(2)由(1)知,,所以,即,亦即,解得,所以满足等式的解,故集合中的元素个数为.
28.(2024年北京高考数学真题)设与是两个不同的无穷数列,且都不是常数列.记集合,给出下列4个结论:
①若与均为等差数列,则M中最多有1个元素;
②若与均为等比数列,则M中最多有2个元素;
③若为等差数列,为等比数列,则M中最多有3个元素;
④若为递增数列,为递减数列,则M中最多有1个元素.
其中正确结论的序号是 .
【答案】①③④
【解析】对于①,因为均为等差数列,故它们的散点图分布在直线上,
而两条直线至多有一个公共点,故中至多一个元素,故①正确.
对于②,取则均为等比数列,
但当为偶数时,有,此时中有无穷多个元素,故②错误.
对于③,设,,
若中至少四个元素,则关于的方程至少有4个不同的正数解,
若,则由和的散点图可得关于的方程至多有两个不同的解,矛盾;
若,考虑关于的方程奇数解的个数和偶数解的个数,
当有偶数解,此方程即为,
方程至多有两个偶数解,且有两个偶数解时,
否则,因单调性相反,
方程至多一个偶数解,
当有奇数解,此方程即为,
方程至多有两个奇数解,且有两个奇数解时即
否则,因单调性相反,
方程至多一个奇数解,
因为,不可能同时成立,
故不可能有4个不同的整数解,即M中最多有3个元素,故③正确.
对于④,因为为递增数列,为递减数列,前者散点图呈上升趋势,
后者的散点图呈下降趋势,两者至多一个交点,故④正确.
故答案为:①③④.
考点7:数列新定义问题
29.(2022年新高考北京数学高考真题)已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.
(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;
(2)若为连续可表数列,求证:k的最小值为4;
(3)若为连续可表数列,且,求证:.
【解析】(1),,,,,所以是连续可表数列;易知,不存在使得,所以不是连续可表数列.
(2)若,设为,则至多,6个数字,没有个,矛盾;
当时,数列,满足,,,,,,,, .
(3),若最多有种,若,最多有种,所以最多有种,
若,则至多可表个数,矛盾,
从而若,则,至多可表个数,
而,所以其中有负的,从而可表1~20及那个负数(恰 21个),这表明中仅一个负的,没有0,且这个负的在中绝对值最小,同时中没有两数相同,设那个负数为 ,
则所有数之和,,
,再考虑排序,排序中不能有和相同,否则不足个,
(仅一种方式),
与2相邻,
若不在两端,则形式,
若,则(有2种结果相同,方式矛盾),
, 同理 ,故在一端,不妨为形式,
若,则 (有2种结果相同,矛盾),同理不行,
,则 (有2种结果相同,矛盾),从而,
由于,由表法唯一知3,4不相邻,、
故只能,①或,②
这2种情形,
对①:,矛盾,
对②:,也矛盾,综上,
当时,数列满足题意,
.
30.(2024年上海夏季高考数学真题)无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是 .
【答案】
【解析】由题设有,因为,故,故,
当时,,故,此时为闭区间,
当时,不妨设,若,则,
若,则,
若,则,
综上,,
又为闭区间等价于为闭区间,
而,故对任意恒成立,
故即,故,
故对任意的恒成立,因,
故当时,,故即.
故答案为:.
31.设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
(1)写出所有的,,使数列是可分数列;
(2)当时,证明:数列是可分数列;
(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.
【来源】2024年新课标全国Ⅰ卷数学真题
【解析】(1)首先,我们设数列的公差为,则.
由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,
故我们可以对该数列进行适当的变形,
得到新数列,然后对进行相应的讨论即可.
换言之,我们可以不妨设,此后的讨论均建立在该假设下进行.
回到原题,第1小问相当于从中取出两个数和,使得剩下四个数是等差数列.
那么剩下四个数只可能是,或,或.
所以所有可能的就是.
(2)由于从数列中取出和后,剩余的个数可以分为以下两个部分,共组,使得每组成等差数列:
①,共组;
②,共组.
(如果,则忽略②)
故数列是可分数列.
(3)定义集合,.
下面证明,对,如果下面两个命题同时成立,
则数列一定是可分数列:
命题1:或;
命题2:.
我们分两种情况证明这个结论.
第一种情况:如果,且.
此时设,,.
则由可知,即,故.
此时,由于从数列中取出和后,
剩余的个数可以分为以下三个部分,共组,使得每组成等差数列:
①,共组;
②,共组;
③,共组.
(如果某一部分的组数为,则忽略之)
故此时数列是可分数列.
第二种情况:如果,且.
此时设,,.
则由可知,即,故.
由于,故,从而,这就意味着.
此时,由于从数列中取出和后,剩余的个数可以分为以下四个部分,共组,使得每组成等差数列:
①,共组;
②,,共组;
③全体,其中,共组;
④,共组.
(如果某一部分的组数为,则忽略之)
这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含个行,个列的数表以后,个列分别是下面这些数:
,,,.
可以看出每列都是连续的若干个整数,它们再取并以后,将取遍中除开五个集合,,,,中的十个元素以外的所有数.
而这十个数中,除开已经去掉的和以外,剩余的八个数恰好就是②中出现的八个数.
这就说明我们给出的分组方式满足要求,故此时数列是可分数列.
至此,我们证明了:对,如果前述命题1和命题2同时成立,则数列一定是可分数列.
然后我们来考虑这样的的个数.
首先,由于,和各有个元素,故满足命题1的总共有个;
而如果,假设,则可设,,代入得.
但这导致,矛盾,所以.
设,,,则,即.
所以可能的恰好就是,对应的分别是,总共个.
所以这个满足命题1的中,不满足命题2的恰好有个.
这就得到同时满足命题1和命题2的的个数为.
当我们从中一次任取两个数和时,总的选取方式的个数等于.
而根据之前的结论,使得数列是可分数列的至少有个.
所以数列是可分数列的概率一定满足
.
这就证明了结论.
32.(2023年北京高考数学真题)已知数列的项数均为m,且的前n项和分别为,并规定.对于,定义,其中,表示数集M中最大的数.
(1)若,求的值;
(2)若,且,求;
(3)证明:存在,满足 使得.
【解析】(1)由题意可知:,
当时,则,故;
当时,则,故;
当时,则故;
当时,则,故;
综上所述:,,,.
(2)由题意可知:,且,
因为,且,则对任意恒成立,
所以,
又因为,则,即,
可得,
反证:假设满足的最小正整数为,
当时,则;当时,则,
则,
又因为,则,
假设不成立,故,
即数列是以首项为1,公差为1的等差数列,所以.
(3)因为均为正整数,则均为递增数列,
(ⅰ)若,则可取,满足 使得;
(ⅱ)若,则,
构建,由题意可得:,且为整数,
反证,假设存在正整数,使得,
则,可得,
这与相矛盾,故对任意,均有.
①若存在正整数,使得,即,
可取,
满足,使得;
②若不存在正整数,使得,
因为,且,
所以必存在,使得,
即,可得,
可取,
满足,使得;
(ⅲ)若,
定义,则,
构建,由题意可得:,且为整数,
反证,假设存在正整数,使得,
则,可得,
这与相矛盾,故对任意,均有.
①若存在正整数,使得,即,
可取,
即满足,使得;
②若不存在正整数,使得,
因为,且,
所以必存在,使得,
即,可得,
可取,
满足,使得.
综上所述:存在使得.
33.(2024年北京高考数学真题)已知集合.给定数列,和序列,其中,对数列进行如下变换:将的第项均加1,其余项不变,得到的数列记作;将的第项均加1,其余项不变,得到数列记作;……;以此类推,得到,简记为.
(1)给定数列和序列,写出;
(2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由;
(3)若数列的各项均为正整数,且为偶数,求证:“存在序列,使得的各项都相等”的充要条件为“”.
【解析】(1)因为数列,
由序列可得;
由序列可得;
由序列可得;
所以.
(2)解法一:假设存在符合条件的,可知的第项之和为,第项之和为,
则,而该方程组无解,故假设不成立,
故不存在符合条件的;
解法二:由题意可知:对于任意序列,所得数列之和比原数列之和多4,
假设存在符合条件的,且,
因为,即序列共有8项,
由题意可知:,
检验可知:当时,上式不成立,
即假设不成立,所以不存在符合条件的.
(3)解法一:我们设序列为,特别规定.
必要性:
若存在序列,使得的各项都相等.
则,所以.
根据的定义,显然有,这里,.
所以不断使用该式就得到,,必要性得证.
充分性:
若.
由已知,为偶数,而,所以也是偶数.
我们设是通过合法的序列的变换能得到的所有可能的数列中,使得最小的一个.
上面已经证明,这里,.
从而由可得.
同时,由于总是偶数,所以和的奇偶性保持不变,从而和都是偶数.
下面证明不存在使得.
假设存在,根据对称性,不妨设,,即.
情况1:若,则由和都是偶数,知.
对该数列连续作四次变换后,新的相比原来的减少,这与的最小性矛盾;
情况2:若,不妨设.
情况2-1:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾;
情况2-2:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾.
这就说明无论如何都会导致矛盾,所以对任意的都有.
假设存在使得,则是奇数,所以都是奇数,设为.
则此时对任意,由可知必有.
而和都是偶数,故集合中的四个元素之和为偶数,对该数列进行一次变换,则该数列成为常数列,新的等于零,比原来的更小,这与的最小性矛盾.
综上,只可能,而,故是常数列,充分性得证.
解法二:由题意可知:中序列的顺序不影响的结果,
且相对于序列也是无序的,
(ⅰ)若,
不妨设,则,
①当,则,
分别执行个序列、个序列,
可得,为常数列,符合题意;
②当中有且仅有三个数相等,不妨设,则,
即,
分别执行个序列、个序列
可得,
即,
因为为偶数,即为偶数,
可知的奇偶性相同,则,
分别执行个序列,,,,
可得,
为常数列,符合题意;
③若,则,即,
分别执行个、个,
可得,
因为,
可得,
即转为①,可知符合题意;
④当中有且仅有两个数相等,不妨设,则,
即,
分别执行个、个,
可得,
且,可得,
即转为②,可知符合题意;
⑤若,则,即,
分别执行个、个,
可得,
且,可得,
即转为③,可知符合题意;
综上所述:若,则存在序列,使得为常数列;
(ⅱ)若存在序列,使得为常数列,
因为对任意,
均有成立,
若为常数列,则,
所以;
综上所述:“存在序列,使得为常数列”的充要条件为“”.
考点8:数列通项与求和问题
34.(2024年高考全国甲卷数学(理)真题)记为数列的前项和,已知.
(1)求的通项公式;
(2)设,求数列的前项和.
【解析】(1)当时,,解得.
当时,,所以即,
而,故,故,
∴数列是以4为首项,为公比的等比数列,
所以.
(2),
所以
故
所以
,
.
35.(2024年天津高考数学真题)已知数列是公比大于0的等比数列.其前项和为.若.
(1)求数列前项和;
(2)设,.
(ⅰ)当时,求证:;
(ⅱ)求.
【解析】(1)设等比数列的公比为,
因为,即,
可得,整理得,解得或(舍去),
所以.
(2)(i)由(1)可知,且,
当时,则,即
可知,
,
可得,
当且仅当时,等号成立,
所以;
(ii)由(1)可知:,
若,则;
若,则,
当时,,可知为等差数列,
可得,
所以,
且,符合上式,综上所述:.
36.(2023年高考全国甲卷数学(理)真题)设为数列的前n项和,已知.
(1)求的通项公式;
(2)求数列的前n项和.
【解析】(1)因为,
当时,,即;
当时,,即,
当时,,所以,
化简得:,当时,,即,
当时都满足上式,所以.
(2)因为,所以,
,
两式相减得,
,
,即,.
37.(2022年新高考天津数学高考真题)设是等差数列,是等比数列,且.
(1)求与的通项公式;
(2)设的前n项和为,求证:;
(3)求.
【解析】(1)设公差为d,公比为,则,
由可得(舍去),
所以;
(2)证明:因为所以要证,
即证,即证,
即证,
而显然成立,所以;
(3)因为
,
所以
,
设
所以,
则,
作差得
,
所以,
所以.
考点9:数列不等式
38.(2023年天津高考数学真题)已知是等差数列,.
(1)求的通项公式和.
(2)设是等比数列,且对任意的,当时,则,
(Ⅰ)当时,求证:;
(Ⅱ)求的通项公式及前项和.
【解析】(1)由题意可得,解得,
则数列的通项公式为,
求和得
.
(2)(Ⅰ)由题意可知,当时,,
取,则,即,
当时,,
取,此时,
据此可得,
综上可得:.
(Ⅱ)由(Ⅰ)可知:,
则数列的公比满足,
当时,,所以,
所以,即,
当时,,所以,
所以数列的通项公式为,
其前项和为:.
39.(2023年新课标全国Ⅱ卷数学真题)已知为等差数列,,记,分别为数列,的前n项和,,.
(1)求的通项公式;
(2)证明:当时,.
【解析】(1)设等差数列的公差为,而,
则,
于是,解得,,
所以数列的通项公式是.
(2)方法1:由(1)知,,,
当为偶数时,,
,
当时,,因此,
当为奇数时,,
当时,,因此,
所以当时,.
方法2:由(1)知,,,
当为偶数时,,
当时,,因此,
当为奇数时,若,则
,显然满足上式,因此当为奇数时,,
当时,,因此,
所以当时,.
40.(2022年新高考全国I卷数学真题)记为数列的前n项和,已知是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
【解析】(1)∵,∴,∴,
又∵是公差为的等差数列,
∴,∴,
∴当时,,
∴,
整理得:,
即,
∴
,
显然对于也成立,
∴的通项公式;
(2)
∴
考点
三年考情(2022-2024)
命题趋势
考点1:等差数列基本量运算
2023年全国Ⅰ卷、2024年全国Ⅱ卷
2023年新课标全国Ⅰ卷数学真题
2022年高考全国乙卷数学(文)真题
2023年高考全国甲卷数学(文)真题
2023年高考全国乙卷数学(理)真题
2024年高考全国甲卷数学(文)真题
2024年高考全国甲卷数学(理)真题
2023年高考全国乙卷数学(文)真题
高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.
考点2:等比数列基本量运算
2023年全国Ⅱ卷、2023年天津卷
2023年高考全国甲卷数学(理)真题
2022年高考全国乙卷数学(理)真题
2023年高考全国甲卷数学(文)真题
2023年高考全国乙卷数学(理)真题
考点3:数列的实际应用
2024年北京高考数学真题
2023年北京高考数学真题
2022年新高考全国II卷数学真题
2022年高考全国乙卷数学(理)真题
考点4:数列的最值问题
2022年高考全国甲卷数学(理)真题
2022年新高考北京数学高考真题
考点5:数列的递推问题(蛛网图问题)
2024年高考全国甲卷数学(文)真题
2024年新课标全国Ⅱ卷数学真题
2022年新高考浙江数学高考真题
2023年北京高考数学真题
考点6:等差数列与等比数列的综合应用
2022年新高考浙江数学高考真题
2022年新高考全国II卷数学真题
2024年北京高考数学真题
考点7:数列新定义问题
2022年新高考北京数学高考真题
2024年上海夏季高考数学真题
2023年北京卷、2024年北京卷
考点8:数列通项与求和问题
2024年高考全国甲卷数学(理)真题
2024年天津高考数学真题
2023年高考全国甲卷数学(理)真题
2022年新高考天津数学高考真题
考点9:数列不等式
2023年天津高考数学真题
2023年全国Ⅱ卷、2022年全国I卷
相关试卷
这是一份专题12 概率与统计(文)(六大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用),文件包含专题12概率与统计文六大考点原卷版docx、专题12概率与统计文六大考点解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份专题09 平面向量(六大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用),文件包含专题09平面向量六大考点原卷版docx、专题09平面向量六大考点解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份专题07 三角函数(七大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用),文件包含专题07三角函数七大考点原卷版docx、专题07三角函数七大考点解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。