所属成套资源:十年(2014-2023)高考数学真题分项汇编(全国通用)
十年(2014-2023)高考数学真题分项汇编(全国通用)专题22 导数解答题(理科)-1
展开
这是一份十年(2014-2023)高考数学真题分项汇编(全国通用)专题22 导数解答题(理科)-1,共4页。
(2020北京高考·第19题)
已知函数.
(Ⅰ)求曲线的斜率等于的切线方程;
(Ⅱ)设曲线在点处的切线与坐标轴围成的三角形的面积为,求的最小值.
(2018年高考数学天津(理)·第20题)
已知函数,,其中a>1.
(I)求函数的单调区间;
(II)若曲线在点处的切线与曲线在点 处的切线平行,证明:;
(III)证明:当时,存在直线l,使l是曲线的切线,也是曲线的切线.
(2020年新高考全国Ⅰ卷(山东)·第21题)
已知函数.
(1)当时,求曲线在点处的切线与两坐标轴围成的三角形的面积;
(2)若不等式恒成立,求a的取值范围.
(2020年新高考全国卷Ⅱ数学(海南)·第22题)
已知函数.
(1)当时,求曲线在点处的切线与两坐标轴围成的三角形的面积;
(2)若不等式恒成立,求a的取值范围.
(2018年高考数学浙江卷·第22题)
已知函数.
(1)若在处导数相等,证明:;
(2)若,证明:对于任意,直线与曲线有唯一公共点.
(2014高考数学课标1理科·第21题)
设函数,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.
(1)求 (2)证明:
(2019·全国Ⅲ·理·第20题)
已知函数.
(1)讨论的单调性;
(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.
(2019·全国Ⅱ·理·第20题)
已知函数.
(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线的切线.
题型二:导数与函数的单调性
(2022高考北京卷·第20题)
已知函数.
(1)求曲线在点处的切线方程;
(2)设,讨论函数在上的单调性;
(3)证明:对任意的,有.
(本小题满分12分)
已知函数,其中,为参数,且.
(1)当时,判断函数是否有极值;
(2)要使函数的极小值大于零,求参数的取值范围;
(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围.
(2014高考数学重庆理科·第20题)
已知函数的导函数为偶函数,且曲线在点处的切线的斜率为.
(1)确定的值;
(2)若,判断的单调性;
(3)若有极值,求的取值范围.
(2014高考数学天津理科·第20题)
设,,已知函数有两个零点,且.
(1)求a的取值范围;
(2)证明:随着a的减小而增大;
(3)证明:随着a的减小而增大.
(2014高考数学江西理科·第19题)
已知函数.
(1)当b=4时,求的极值;
(2)若在区间上单调递增,求b的取值范围.
(2015高考数学重庆理科·第20题)
设函数
(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;
(2)若在上为减函数,求的取值范围.
(2016高考数学北京理科·第18题)
设函数,曲线在点处的切线方程为,
(1)求,的值;
(2)求的单调区间.
(2021年高考全国甲卷理科·第21题)
已知且,函数.
(1)当时,求的单调区间;
(2)若曲线与直线有且仅有两个交点,求a的取值范围.
(2020年高考课标Ⅰ卷理科·第21题)
已知函数.
(1)当a=1时,讨论f(x)的单调性;
(2)当x≥0时,f(x)≥x3+1,求a的取值范围.
相关试卷
这是一份专题22 导数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题22导数解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题22导数解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共152页, 欢迎下载使用。
这是一份专题21 数列解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题21数列解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题21数列解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共104页, 欢迎下载使用。
这是一份专题05 导数选择、填空(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题05导数选择填空理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题05导数选择填空理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。