所属成套资源:【冲刺高考】2024高考数学二轮复习解析几何压轴题(全国通用)
专题16 圆锥曲线解答题特训(5年高考+3年模拟)-2024高考数学二轮复习解析几何压轴题
展开这是一份专题16 圆锥曲线解答题特训(5年高考+3年模拟)-2024高考数学二轮复习解析几何压轴题,文件包含专题16圆锥曲线解答题特训5年高考+3年模拟原卷版docx、专题16圆锥曲线解答题特训5年高考+3年模拟解析版docx等2份试卷配套教学资源,其中试卷共126页, 欢迎下载使用。
一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
专题16 圆锥曲线解答题特训(5年高考+3年模拟)
1.(2023·全国·高考真题)已知直线与抛物线交于两点,且.
(1)求;
(2)设F为C的焦点,M,N为C上两点,,求面积的最小值.
2.(2023·全国·高考真题)已知椭圆的离心率是,点在上.
(1)求的方程;
(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.
3.(2023·天津·高考真题)已知椭圆的左右顶点分别为,右焦点为,已知.
(1)求椭圆的方程和离心率;
(2)点在椭圆上(异于椭圆的顶点),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程.
4.(2023·全国·高考真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.
(1)求C的方程;
(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.
5.(2022·天津·高考真题)椭圆的右焦点为F、右顶点为A,上顶点为B,且满足.
(1)求椭圆的离心率;
(2)直线l与椭圆有唯一公共点M,与y轴相交于N(N异于M).记O为坐标原点,若,且的面积为,求椭圆的标准方程.
6.(2022·全国·高考真题)已知双曲线的右焦点为,渐近线方程为.
(1)求C的方程;
(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
①M在上;②;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
7.(2022·浙江·高考真题)如图,已知椭圆.设A,B是椭圆上异于的两点,且点在线段上,直线分别交直线于C,D两点.
(1)求点P到椭圆上点的距离的最大值;
(2)求的最小值.
8.(2022·全国·高考真题)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
9.(2022·全国·高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
10.(2022·北京·高考真题)已知椭圆的一个顶点为,焦距为.
(1)求椭圆E的方程;
(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.
11.(2021·天津·高考真题)已知椭圆的右焦点为,上顶点为,离心率为,且.
(1)求椭圆的方程;
(2)直线与椭圆有唯一的公共点,与轴的正半轴交于点,过与垂直的直线交轴于点.若,求直线的方程.
12.(2021·全国·高考真题)已知椭圆C的方程为,右焦点为,且离心率为.
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.
13.(2021·浙江·高考真题)如图,已知F是抛物线的焦点,M是抛物线的准线与x轴的交点,且,
(1)求抛物线的方程;
(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线,x轴依次交于点P,Q,R,N,且,求直线l在x轴上截距的范围.
14.(2021·全国·高考真题)已知抛物线的焦点为,且与圆上点的距离的最小值为.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
15.(2021·全国·高考真题)在平面直角坐标系中,已知点、,点的轨迹为.
(1)求的方程;
(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.
16.(2020·山东·高考真题)已知椭圆C:的离心率为,且过点.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
17.(2021·北京·高考真题)已知椭圆一个顶点,以椭圆的四个顶点为顶点的四边形面积为.
(1)求椭圆E的方程;
(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.
18.(2020·海南·高考真题)已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,
(1)求C的方程;
(2)点N为椭圆上任意一点,求△AMN的面积的最大值.
19.(2019·全国·高考真题)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.
(1)证明:直线AB过定点:
(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
20.(2019·全国·高考真题)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:是直角三角形;
(ii)求面积的最大值.
21.(2024·四川南充·二模)如图,已知四边形的四个顶点都在抛物线上,且A,B在第一象限,轴,抛物线在点A处的切线为l,且.
(1)设直线的斜率分别为k和,求的值;
(2)P为与的交点,设的面积为,的面积为,若,求的取值范围.
22.(2024·江苏宿迁·一模)已知双曲线的右顶点为,过点且与轴垂直的直线交一条渐近线于.
(1)求双曲线的方程;
(2)过点作直线与双曲线相交于两点,直线分别交直线于两点,求的取值范围.
23.(2024·云南贵州·二模)已知椭圆的方程,右焦点为,且离心率为
(1)求椭圆的方程;
(2)设是椭圆的左、右顶点,过的直线交于两点(其中点在轴上方),求与的面积之比的取值范围.
24.(2024·安徽蚌埠·模拟预测)已知双曲线的左顶点是,一条渐近线的方程为.
(1)求双曲线E的离心率;
(2)设直线与双曲线E交于点P,Q,求线段PQ的长.
25.(2024·辽宁·一模)已知平面上一动点到定点的距离比到定直线的距离小,记动点的轨迹为曲线.
(1)求的方程;
(2)点为上的两个动点,若恰好为平行四边形的其中三个顶点,且该平行四边形对角线的交点在第一、三象限的角平分线上,记平行四边形的面积为,求证:.
26.(2024·江苏·模拟预测)已知椭圆的离心率为分别为椭圆的左,右顶点和坐标原点,点为椭圆上异于的一动点,面积的最大值为.
(1)求的方程;
(2)过椭圆的右焦点的直线与交于两点,记的面积为,过线段的中点作直线的垂线,垂足为,设直线的斜率分别为.
①求的取值范围;
②求证:为定值.
27.(2024·内蒙古赤峰·一模)已知抛物线上一点的纵坐标为,点到焦点的距离为.过点做两条互相垂直的弦、,设弦、的中点分别为.
(1)求抛物线的方程;
(2)过焦点作,且垂足为,求的最大值.
28.(2024·江苏南通·二模)在平面直角坐标系xOy中,已知椭圆Γ:的离心率为,直线l与Γ相切,与圆O:相交于A,B两点.当l垂直于x轴时,.
(1)求Γ的方程;
(2)对于给定的点集M,N,若M中的每个点在N中都存在距离最小的点,且所有最小距离的最大值存在,则记此最大值为.
(ⅰ)若M,N分别为线段AB与圆O上任意一点,P为圆O上一点,当的面积最大时,求;
(ⅱ)若,均存在,记两者中的较大者为.已知,,均存在,证明:.
29.(2024·河南新乡·二模)已知,分别是椭圆:()的左、右顶点,为的上顶点,是上在第一象限的点,,直线,的斜率分别为,,且.
(1)求的方程;
(2)直线与交于点,与轴交于点,求的取值范围.
30.(2024·广东佛山·二模)已知以下事实:反比例函数()的图象是双曲线,两条坐标轴是其两条渐近线.
(1)(ⅰ)直接写出函数的图象的实轴长;
(ⅱ)将曲线绕原点顺时针转,得到曲线,直接写出曲线的方程.
(2)已知点是曲线的左顶点.圆:()与直线:交于、两点,直线、分别与双曲线交于、两点.试问:点A到直线的距离是否存在最大值?若存在,求出此最大值以及此时的值;若不存在,说明理由.
31.(2024·天津·一模)已知椭圆的右顶点为,下顶点为,椭圆的离心率为,且.
(1)求椭圆的方程;
(2)已知点在椭圆上(异于椭圆的顶点),点满足(为坐标原点),直线与以为圆心的圆相切于点,且为中点,求直线斜率.
32.(2024·辽宁葫芦岛·一模)已知双曲线G的中心为坐标原点,离心率为,左、右顶点分别为,.
(1)求的方程;
(2)过右焦点的直线l与G的右支交于M,N两点,若直线与交于点.
(i)证明:点在定直线上:
(ii)若直线与交于点,求证:.
33.(2024·浙江·二模)已知椭圆的左顶点和下顶点B,焦距为,直线l交椭圆L于C,D(不同于椭圆的顶点)两点,直线AD交y轴于M,直线BC交x轴于N,且直线MN交l于P.
(1)求椭圆L的标准方程;
(2)若直线AD,BC的斜率相等,证明:点P在一条定直线上运动.
34.(2024·河南·模拟预测)已知双曲线只经过点,中的两个点.
(1)求的方程;
(2)设直线与轴分别交于点,点在的右支上且与不重合,过点作的切线与分别交于点,直线与直线交于点,直线与轴交于点,判断是否为定值,若为定值,求出该定值,若不为定值,说明理由.
35.(2024·四川成都·二模)已知双曲线的左、右顶点分别为,右焦点为.过点的直线与双曲线相交于两点,点关于轴的对称点为,且直线的斜率之积为.
(1)求双曲线的标准方程;
(2)直线分别与直线相交于两点,求证:以为直径的圆经过轴上的定点,并求出定点的坐标.
36.(2024·广东深圳·模拟预测)在平面直角坐标系中,已知椭圆的左、右焦点分别为、,点A在椭圆E上且在第一象限内,,点A关于y轴的对称点为点B.
(1)求A点坐标;
(2)在x轴上任取一点P,直线与直线相交于点Q,求的最大值;
(3)设点M在椭圆E上,记与的面积分别为,,若,求点M的坐标.
37.(2024·安徽阜阳·一模)已知双曲线的左、右顶点分别为,动直线过点,当直线与双曲线有且仅有一个公共点时,点到直线的距离为.
(1)求双曲线的标准方程.
(2)当直线与双曲线交于异于的两点时,记直线的斜率为,直线的斜率为.是否存在实数,使得成立?若存在,求出的值;若不存在,请说明理由.
38.(2024·安徽芜湖·二模)在平面直角坐标系xOy中,椭圆W:的离心率为,已知椭圆长轴长是短轴长的2倍,且椭圆W过点.
(1)求椭圆W的方程;
(2)已知平行四边形ABCD的四个顶点均在W上,求平行四边形ABCD的面积S的最大值.
39.(2024·安徽合肥·一模)已知抛物线的焦点为,过点的直线与交于两点,过作的切线,交于点,且与轴分别交于点.
(1)求证:;
(2)设点是上异于的一点,到直线的距离分别为,求的最小值.
40.(2024·浙江金华·模拟预测)已知双曲线:,F为双曲线的右焦点,过F作直线交双曲线于A,B两点,过F点且与直线垂直的直线交直线于P点,直线OP交双曲线于M,N两点.
(1)求双曲线的离心率;
(2)若直线OP的斜率为,求的值;
(3)设直线AB,AP,AM,AN的斜率分别为,,,,且,,记,,,试探究v与u,w满足的方程关系,并将v用w,u表示出来.
41.(2024·上海·二模)在中,已知,,设分别是的重心、垂心、外心,且存在使.
(1)求点的轨迹的方程;
(2)求的外心的纵坐标的取值范围;
(3)设直线与的另一个交点为,记与的面积分别为,是否存在实数使?若存在,求出的值;若不存在,请说明理由.
42.(2024·四川南充·二模)已知点是抛物线上的定点,点是上的动点,直线的斜率分别为,且,直线是曲线在点处的切线.
(1)若,求直线的斜率;
(2)设的外接圆为,试判断直线与圆的位置关系,并说明理由.
43.(2024·四川南充·二模)已知点在抛物线C:上,点,是抛物线C上的动点,直线的斜率分别为,且,直线是曲线在点处的切线.
(1)求直线的斜率;
(2)设的外接圆为,求证:直线与圆相切.
44.(2024·四川成都·二模)抛物线的焦点到准线的距离等于椭圆的短轴长.
(1)求抛物线的方程;
(2)设是抛物线上位于第一象限的一点,过作(其中)的两条切线,分别交抛物线于点,过原点作直线的垂线,垂足为,证明点在定圆上,并求定圆方程
45.(2024·江西·二模)已知椭圆的方程为,由其个顶点确定的三角形的面积为,点在上,为直线上关于轴对称的两个动点,直线与的另一个交点分别为.
(1)求的标准方程;
(2)证明:直线经过定点;
(3)为坐标原点,求面积的最大值..
46.(2024·重庆·模拟预测)已知点和直线,点到的距离 .
(1)求点的轨迹方程;
(2)不经过圆点的直线与点的轨迹交于,两点. 设直线,的斜率分别为,,记 ,是否存在值使得的面积为定值,若存在,求出的值;若不存在,说明理由.
47.(2024·河北唐山·一模)已知双曲线:,,,直线与有唯一公共点.
(1)求的方程:
(2)若双曲线的离心率不大于,过的直线与交于不同的两点,.求直线与直线的斜率之和.
48.(2024·陕西安康·模拟预测)已知双曲线的离心率为2,其中一个焦点到一条渐近线的距离等于.
(1)求该双曲线的标准方程;
(2)若直线与双曲线交于两点,且坐标原点在以为直径的圆上,求的最小值.
49.(2024·福建厦门·二模)已知,,为平面上的一个动点.设直线的斜率分别为,,且满足.记的轨迹为曲线.
(1)求的轨迹方程;
(2)直线,分别交动直线于点,过点作的垂线交轴于点.是否存在最大值?若存在,求出最大值;若不存在,说明理由.
50.(2024·河南·模拟预测)已知分别为双曲线的左、右顶点,,动直线与双曲线交于两点.当轴,且时,四边形的面积为.
(1)求双曲线的标准方程.
(2)设均在双曲线的右支上,直线与分别交轴于两点,若,判断直线是否过定点.若过,求出该定点的坐标;若不过,请说明理由.
相关试卷
这是一份专题13 函数与导数解答题特训(5年高考+3年模拟)-【压轴】2024高考数学二轮复习讲义,文件包含专题13函数与导数解答题特训5年高考+3年模拟原卷版docx、专题13函数与导数解答题特训5年高考+3年模拟解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
这是一份圆锥曲线压轴解答题的处理策略-2024年高考数学压轴题专项训练,文件包含压轴题型圆锥曲线压轴解答题的处理策略解析版pdf、压轴题型圆锥曲线压轴解答题的处理策略学生版pdf等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
这是一份专题18 圆锥曲线高频压轴解答题(16大题型)(练习)-2024年高考数学二轮复习讲练测(新教材新高考),文件包含专题18圆锥曲线高频压轴解答题16大题型练习原卷版docx、专题18圆锥曲线高频压轴解答题16大题型练习解析版docx等2份试卷配套教学资源,其中试卷共88页, 欢迎下载使用。