|试卷下载
搜索
    上传资料 赚现金
    2023八年级数学上册专题突破第08讲角平分线中垂线性质定理专题复习含解析新版浙教版
    立即下载
    加入资料篮
    2023八年级数学上册专题突破第08讲角平分线中垂线性质定理专题复习含解析新版浙教版01
    2023八年级数学上册专题突破第08讲角平分线中垂线性质定理专题复习含解析新版浙教版02
    2023八年级数学上册专题突破第08讲角平分线中垂线性质定理专题复习含解析新版浙教版03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学浙教版八年级上册第2章 特殊三角形2.1 图形的轴对称课后测评

    展开
    这是一份初中数学浙教版八年级上册第2章 特殊三角形2.1 图形的轴对称课后测评,共28页。

    1.如图,△ABC的∠ABC和∠ACB的角平分线BE,CF相交于点O,∠A=60°,则∠BOC的大小为( )
    A.110°B.120°C.130°D.150°
    【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数.
    【解答】解:∵OB、OC分别是∠ABC和∠ACB的角平分线,
    ∴∠OBC=,,
    ∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),
    ∵∠A=60°,
    ∴∠OBC+∠OCB=(180°﹣60°)=60°,
    ∴∠BOC=180°﹣(∠OBC+∠OCB)
    =180°﹣60°
    =120°.
    故选:B.
    2.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1= .∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010= .
    【分析】根据三角形的外角定理可知∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线定义得∠ACD=2∠A1CD,∠ABC=2∠A1BC,代入∠ACD=∠A+∠ABC中,与∠A1CD=∠A1+∠A1BC比较,可得∠A1==,由此得出一般规律.
    【解答】解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,
    ∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,
    ∴∠A1==,
    由此可得∠A2010=.
    故答案为:,.
    3.如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,则∠BOA=,∠DAC=.
    【分析】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.
    【解答】解:∵AD是△ABC的高线,
    ∴∠ADC=90°,
    ∵∠ADC+∠C+∠CAD=180°,∠C=70°,
    ∴∠CAD=180°﹣90°﹣70°=20°;
    ∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,
    ∴∠ABC=180°﹣70°﹣50°=60°,
    ∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,
    ∴∠BAO=∠BAC=25°,∠ABO=∠ABC=30°,
    ∵∠ABO+∠BAO+∠AOB=180°,
    ∴∠AOB=180°﹣25°﹣30°=125°.
    故答案为:∠AOB°=125°,∠CAD=20°
    4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为( )
    A.3B.4C.3.5D.2
    【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.判断出∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,判断出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.
    【解答】解:∵∠ABC和∠ACB的平分线相交于点F,
    ∴∠DBF=∠FBC,∠ECF=∠BCF,
    ∵DF∥BC,交AB于点D,交AC于点E.
    ∴∠DFB=∠DBF,∠CFE=∠BCF,
    ∴BD=DF=4,FE=CE,
    ∴CE=DE﹣DF=7﹣4=3.
    故选:A.
    5.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°.则∠FEC的度数为( )
    A.10°B.20°C.30°D.60°
    【分析】根据AD∥BC,∠DAC+∠ACB=180°,再由∠DAC=120°,得出∠ACB=60°,由∠ACF=20°,得∠BCF的度数,根据CE平分∠BCF,得∠BCE=∠ECF,因为EF∥AD,则EF∥BC,∠FEC=∠BCE,即可得出∠FEC=∠FCE.
    【解答】解:∵AD∥BC,
    ∴∠DAC+∠ACB=180°,
    ∵∠DAC=120°,
    ∴∠ACB=60°,
    ∵∠ACF=20°,
    ∴∠BCF的=40°,
    ∵CE平分∠BCF,
    ∴∠BCE=∠ECF=20°,
    ∵EF∥AD,
    ∴EF∥BC,
    ∴∠FEC=∠BCE,
    ∴∠FEC=∠FCE=20°.
    故选:B.
    6.如图,在△ABC中,∠B+∠C=100°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )
    A.30°B.40°C.50°D.60°
    【分析】首先利用三角形的内角和求得∠BAC,进一步求得∠BAD,利用DE∥AB求得∠ADE=∠BAD得出答案即可.
    【解答】解:∵在△ABC中,∠B+∠C=100°,
    ∴∠BAC=80°,
    ∵AD平分∠BAC,
    ∴∠BAD=∠BAC=40°,
    ∵DE∥AB,
    ∴∠ADE=∠BAD=40°.
    故选:B.
    7.如图,点O是△ABC角平分线的交点,过点O作MN∥BC分别与AB,AC相交于点M,N,若AB=5,BC=8,CA=7,则△AMN的周长为 12 .
    【分析】根据角平分线性质和平行线的性质推出∠MOB=∠MBO,推出BM=OM,同理CN=ON,代入三角形周长公式求出即可.
    【解答】解:∵BO平分∠ABC,
    ∴∠MBO=∠CBO,
    ∵MN∥BC,
    ∴∠MOB=∠CBO,
    ∴∠MOB=∠MBO,
    ∴OM=BM,
    同理CN=NO,
    ∴BM+CN=MN,
    ∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=5+7=12,
    故答案为:12.
    8.如图,Rt△ABC的两直角边AB、BC的长分别是9、12.其三条角平分线交于点O,将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
    A.1:1:1B.1:2:3C.3:4:5D.2:3:4
    【分析】过O点作OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为D,E,F,根据角平分线的性质可知:OD=OE=OF,根据勾股定理可求解AC的长,再利用三角形的面积公式计算可求解.
    【解答】解:过O点作OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为D,E,F,
    ∵△ABC的三条角平分线交于点O,
    ∴OD=OE=OF,
    在Rt△ABC中,AB=9,BC=12,
    ∴AC=,
    ∴S△ABO:S△BCO:S△CAO=

    故选:C.
    9.如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若BC=10,点D到AB的距离为4,则DB的长为( )
    A.6B.8C.5D.4
    【分析】过点D作DE⊥AB于E,根据角平分线的性质定理得到DC=DE=4,结合图形计算,得到答案.
    【解答】解:过点D作DE⊥AB于E,
    ∵AD平分∠BAC,∠ACB=90°,DE⊥AB,
    ∴DC=DE=4,
    ∴BD=BC﹣DC=10﹣4=6,
    故选:A.
    10.如图,AB∥CD,∠CAB和∠ACD的平分线相交于H点,E为AC的中点,若EH=4.则AC=( )
    A.8B.7C.6D.9
    【分析】先根据平行线的性质得出∠BAC+∠ACD=18°,再由角平分线的性质可得出∠HAC+∠ACH=90°,根据三角形内角和定理即可得出,△AHC是直角三角形.所以根据直角三角形斜边上中线等于斜边的一半解答.
    【解答】解:∵AB∥CD,
    ∴∠BAC+∠ACD=180°.
    ∵∠BAC的平分线和∠ACD的平分线交于点H,
    ∴∠HAC+∠ACH=(∠BAC+∠ACD)=90°,
    ∴∠AHC=180°﹣90°=90°,
    ∴△AHC是直角三角形.
    ∵E为AC的中点,EH=4,
    ∴AC=2EH=8.
    故选:A.
    11.到三角形的三条边距离相等的点( )
    A.是三条角平分线的交点B.是三条中线的交点
    C.是三条高的交点D.以上答案都不对
    【分析】根据三角形三条角平分线的性质可直接求解.
    【解答】解:∵三角形三条角平分线交于一点,这点到三角形的三边的距离相等.
    ∴到三角形的三条边距离相等的点是三条角平分线的交点,
    故选:A.
    12.如图,点P是∠AOB内的一点,PC⊥OA于点C,PD⊥OB于点D,连接OP,CD.若PC=PD,则下列结论不一定成立的是( )
    A.∠AOP=∠BOPB.∠OPC=∠OPD
    C.PO垂直平分CDD.PD=CD
    【分析】依据角平分线的性质、三角形内角和定理以及线段垂直平分线的性质,即可得出结论.
    【解答】解:∵PC⊥OA于点C,PD⊥OB于点D,PC=PD,
    ∴点P在∠AOB的平分线上,即OP平分∠AOB,
    ∴∠AOP=∠BOP,故A选项正确;
    ∵∠PCO=∠PDO=90°,∠AOP=∠BOP,
    ∴∠OPC=∠OPD,故B选项正确;
    ∵∠OPC=∠OPD,PC⊥OA于点C,PD⊥OB于点D,
    ∴OC=OD,
    ∴点O在CD的垂直平分线上,
    又∵PC=PD,
    ∴点P在CD的垂直平分线上,
    ∴PO垂直平分CD,故C选项正确;
    ∵∠PDC的度数不一定是60°,
    ∴△CDP不一定是等边三角形,
    ∴PD=CD不一定成立,故D选项错误;
    故选:D.
    13.如图,在△ABC中,∠A=90°,AB=3,AC=4,∠ABC与∠ACB的平分线交于点O,过点O作OD⊥AB于点D,则AD的长为
    【分析】过O点作OE⊥AC于E,OF⊥BC于F,如图,根据角平分线的性质得到OE=OF=OD,在利用勾股定理计算出BC=5,接着利用面积法求出OD=1,然后证明四边形ADOE为正方形,从而得到AD的长.
    【解答】解:过O点作OE⊥AC于E,OF⊥BC于F,如图,
    ∵BO平分∠ABC,CO平分∠ACB,
    ∴OD=OF,OE=OF,
    即OE=OF=OD,
    ∵∠A=90°,AB=3,AC=4,
    ∴BC==5,
    ∵S△OAB+S△OAC+S△OBC=S△ABC,
    ∴×3×OD+×4×OE+×5×OF=×4×3,
    ∴OD=1,
    ∵∠DAE=∠ADO=∠AEO=90°,
    ∴四边形ADOE为矩形,
    ∵OD=OE,
    ∴四边形ADOE为正方形,
    ∴AD=OD=1.
    故答案为:1.
    14.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB垂直,若AD=8,则点P到BC的距离是
    【分析】过点P作PE⊥BC于E,根据角平分线的性质得到PE=AP,PE=PD,根据AD=8计算,得到答案.
    【解答】解:过点P作PE⊥BC于E,
    ∵AB∥CD,AD⊥AB,
    ∴AD⊥CD,
    ∵BP平分∠ABC,PA⊥AB,PE⊥BC,
    ∴PE=AP,
    同理可得:PE=PD,
    ∴PE=AD,
    ∵AD=8,
    ∴PE=4,即点P到BC的距离是4,
    故答案为:4.
    15.如图,Rt△ABC中,∠C=90°,AC=BC=6,AD为∠BAC的平分线,DE⊥AB垂足为E,则△DBE的周长等于
    【分析】根据勾股定理求出AB,根据线段垂直平分线的性质得到DE=DC,进而求出BE,根据三角形的周长公式计算,得到答案.
    【解答】解:在Rt△ABC中,∠C=90°,AC=BC=6,
    由勾股定理得:AB==6,
    ∵AD为∠BAC的平分线,DE⊥AB,∠C=90°,
    ∴DE=DC,
    ∴AE=AC=6,
    ∴BE=AB﹣AE=6﹣6,
    ∴△DBE的周长=BD+DE+BE=BD+DC+BE=BC+BE=6﹣6+6=6,
    故答案为:6.
    16.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为( )
    A.3cm2B.4cm2C.4.5cm2D.5cm2
    【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC,代入求出即可.
    【解答】解:延长AP交BC于E,
    ∵BP平分∠ABC,
    ∴∠ABP=∠EBP,
    ∵AP⊥BP,
    ∴∠APB=∠EPB=90°,
    在△ABP和△EBP中,,
    ∴△ABP≌△EBP(ASA),
    ∴AP=PE,
    ∴S△ABP=S△EBP,S△ACP=S△ECP,
    ∴S△PBC=S△ABC=×9cm2=4.5cm2,
    故选:C.
    17.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°﹣∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则,其中正确的结论有 ①③④ (填序号).
    【分析】①根据∠ABC和∠ACB的平分线相交于点G可得出∠EBG=∠CBG,∠BCG=∠FCG,再由EF∥BC可知∠CBG=∠EGB,∠BCG=∠CGF,故可得出BE=EG,GF=CF,由此可得出结论;
    ②先根据角平分线的性质得出∠GBC+∠GCB=(∠ABC+∠ACB),再由三角形内角和定理即可得出结论;
    ③根据三角形内心的性质即可得出结论;
    ④连接AG,根据三角形的面积公式即可得出结论.
    【解答】解:①∵∠ABC和∠ACB的平分线相交于点G,
    ∴∠EBG=∠CBG,∠BCG=∠FCG.
    ∵EF∥BC,
    ∴∠CBG=∠EGB,∠BCG=∠CGF,
    ∴∠EBG=∠EGB,∠FCG=∠CGF,
    ∴BE=EG,GF=CF,
    ∴EF=EG+GF=BE+CF,故本小题正确;
    ②∵∠ABC和∠ACB的平分线相交于点G,
    ∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°﹣∠A),
    ∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(180°﹣∠A)=90°+∠A,故本小题错误;
    ③∵∠ABC和∠ACB的平分线相交于点G,
    ∴点G是△ABC的内心,
    ∴点G到△ABC各边的距离相等,故本小题正确;
    ④连接AG,
    ∵点G是△ABC的内心,GD=m,AE+AF=n,
    ∴S△AEF=AE•GD+AF•GD=(AE+AF)•GD=nm,故本小题正确.
    故答案为①③④.
    18.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,已知CD=4.则AC的长为 4+4 .
    【分析】依据角平分线的性质可证明DC=DE,接下来证明△BDE为等腰直角三角形,从而得到DE=EB=4,然后依据勾股定理可求得BD的长,然后由AC=BC=CD+DB求解即可.
    【解答】解:∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,
    ∴DE=CD,
    ∵CD=4,
    ∴DE=4,
    又∵AC=BC,
    ∴∠B=∠BAC,
    又∵∠C=90°,
    ∴∠B=45°,
    ∴∠BDE=90°﹣45°=45°,
    ∴BE=DE=4,
    在等腰直角三角形BDE中,由勾股定理得,BD==4,
    ∴AC=BC=CD+BD=4+4,
    故答案为:4+4.
    19.如图,已知△ABC,∠BAC=80°,∠ABC=40°,若BE平分∠ABC,CE平分外角∠ACD,连接AE,则∠AEB的度数为 30° .
    【分析】过E点作EF⊥AB于F,EH⊥AC于H,EP⊥BD于P,如图,利用角平分线的性质得到EF=EP,∠ABE=∠ABC=×40°=40°,EH=EP,则EF=EH,再根据角平分线的性质定理的逆定理可判断AE平分∠FAC,则可计算出∠FAE=50°,然后根据三角形外角性质可计算出∠AEB的度数.
    【解答】解:过E点作EF⊥AB于F,EH⊥AC于H,EP⊥BD于P,如图,
    ∵BE平分∠ABC,
    ∴EF=EP,∠ABE=∠ABC=×40°=40°,
    ∵CE平分外角∠ACD,
    ∴EH=EP,
    ∴EF=EH,
    ∴AE平分∠FAC,
    ∵∠BAC=80°,
    ∴∠FAC=180°﹣80°=100°,
    ∴∠FAE=∠FAC=50°,
    ∵∠FAE=∠ABE+∠AEB,
    ∴∠AEB=50°﹣20°=30°.
    故答案为30°.
    20.如图,已知∠ABC、∠EAC的角平分线BP、AP相交于点P,PM⊥BE,PN⊥BF,垂足分别为M、N.现有四个结论:
    ①CP平分∠ACF;②∠BPC=∠BAC;③∠APC=90°﹣∠ABC;④S△APM+S△CPN>S△APC.
    其中结论正确的为 ①②③ .(填写结论的编号)
    【分析】①作PD⊥AC于D.根据角平分线性质得到PM=PN,PM=PD,得到PM=PN=PD,于是得到点P在∠ACF的角平分线上,故①正确;
    ②根据三角形的判定和性质得到AD=AM,∠APM=∠APD,CD=CN,∠NPC=∠DPC,于是得到∠APC=MPN,故②正确;
    ③根据四边形的内角和得到∠ABC+90°+∠MPN+90°=360°,求得∠ABC+∠MPN=180°,于是得到∠APC=90°﹣∠ABC,故③正确;
    ④根据角平分线定义得到∠ACF=∠ABC+∠BAC,∠PCN=∠ACF=∠BPC+∠ABC,得到∠BPC=∠BAC,根据全等三角形的性质得到S△APM+S△CPN=S△APC.故④不正确.
    【解答】解:①作PD⊥AC于D.
    ∵PB平分∠ABC,PA平分∠EAC,PM⊥BE,PN⊥BF,
    ∴PM=PN,PM=PD,
    ∴PM=PN=PD,
    ∴点P在∠ACF的角平分线上(到角的两边距离相等的点在角的平分线上),
    故①正确;
    ②∵PB平分∠ABC,CP平分∠ACF,
    ∴∠ABC=2∠PBC,∠ACF=2∠PCF,
    ∵∠ACF=∠ABC+∠BAC,∠PCF=∠PBF+∠BPC,
    ∴∠BAC=2∠BPC,
    ∴∠BPC=∠BAC,故②正确;
    ③∵PM⊥AB,PN⊥BC,
    ∴∠ABC+90°+∠MPN+90°=360°,
    ∴∠ABC+∠MPN=180°,
    ∴∠APC=90°﹣∠ABC,故③正确;
    ④∵S△APD=S△APM,S△CPD=S△CPN,
    ∴S△APM+S△CPN=S△APC,故④不正确.
    综上所述,①②③正确.
    故答案为:①②③.
    21.如图,已知∠ABC、∠ACB的平分线相交于点O,EF过点O且EF∥BC.
    (1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;
    (2)若∠BOC=130°,∠1:∠2=3:2,求∠ABC、∠ACB的度数.
    【分析】(1)由角平分线的定义可求解∠OBC=25°,∠OCB=30°,再利用三角形的内角和定理可求解;
    (2)由已知条件易求∠1,∠2的度数,根据平行线的性质即可得∠OBC,∠OCB的度数,利用角平分线的定义可求解.
    【解答】解:(1)∵∠ABC和∠ACB的平分线BO与CO相交于点O,
    所以∠EBO=∠OBC=,∠FCO=∠OCB=,
    又∠ABC=50°,∠ACB=60°,
    ∴∠OBC=25°,∠OCB=30°,
    ∴∠BOC=180°﹣∠OBC﹣∠OCB=125°;
    (2)∵∠BOC=130°,
    ∴∠1+∠2=50°,
    ∵∠1:∠2=3:2,
    ∴,,
    ∵EF∥BC,
    ∴∠OBC=∠1=30°,∠OCB=∠2=20°,
    ∵∠ABC和∠ACB的平分线BO与CO相交于点O,
    ∴∠ABC=60°,∠ACB=40°.
    22.如图1,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.
    (1)若AB=4,AC=5,求△AEF的周长.
    (2)过点O作OH⊥BC于点H,连接OA,如图2.当∠BAC=60°时,试探究OH与OA的数量关系,并说明理由.
    【分析】(1)证明∠EOB=∠CBO得到EB=EO,同理可得FO=FC,然后利用等线段代换得到△AEF的周长=AB+AC;
    (2)过O点作OG⊥AE于G,OQ⊥AC于Q,如图2,根据角平分线的性质得到OH=OG,OH=OQ,则OG=OQ,根据角平分线的性质定理的逆定理可判断OA平分∠BAC,所以∠GAO=30°,利用含30度的直角三角形三边的关系得到OG=OA,从而得到OH=OA.
    【解答】解:(1)∵OB平分∠ABC,
    ∴∠CBO=∠ABO,
    ∵EF∥BC,
    ∴∠EOB=∠CBO,
    ∴△EBO为等腰三角形,
    ∴EB=EO,
    同理可得FO=FC,
    ∴△AEF的周长=AE+EF+AF=AE+EO+FO+AF=AB+AC=4+5=9;
    (2)OH=OA.
    理由如下:
    过O点作OG⊥AE于G,OQ⊥AC于Q,如图2,
    ∵OB平分∠ABC,OH⊥BC,OG⊥AB,
    ∴OH=OG,
    ∵OC平分∠ACB,
    ∴OH=OQ,
    ∴OG=OQ,
    ∴OA平分∠BAC,
    ∴∠GAO=∠BAC=30°,
    ∴OG=OA,
    ∴OH=OA.
    23.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,BD=4,∠B=30°,S△ACD=7,求AC的长.
    【分析】过点D作DF⊥AC于F,根据直角三角形的性质求出DE,根据角平分线的性质求出DF,根据三角形的面积公式计算,得到答案.
    【解答】解:过点D作DF⊥AC于F,
    在Rt△BDE中,BD=4,∠B=30°,
    ∴DE=BD=2,
    ∵AD是△ABC中∠BAC的平分线,DE⊥AB,DF⊥AC,
    ∴DF=DE=2,
    ∵S△ACD=7,
    ∴×AC×2=7,
    解得:AC=7.
    24.在△ABC中,AD是角平分线,∠B<∠C,
    (1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;
    (2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;
    (3)如图(3),点E在AD的延长线上.EF⊥BC于F,试探究∠DEF与∠B、∠C的关系是 ∠DEF=(∠C﹣∠B) (直接写出结论,不需证明).
    【分析】(1)依据角平分线的定义以及垂线的定义,即可得到∠CAD=∠BAC,∠CAE=90°﹣∠C,进而得出∠DAE=(∠C﹣∠B),由此即可解决问题.
    (2)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C﹣∠B).
    (3)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C﹣∠B)不变.
    【解答】解:(1)如图1,∵AD平分∠BAC,
    ∴∠CAD=∠BAC,
    ∵AE⊥BC,
    ∴∠CAE=90°﹣∠C,
    ∴∠DAE=∠CAD﹣∠CAE
    =∠BAC﹣(90°﹣∠C)
    =(180°﹣∠B﹣∠C)﹣(90°﹣∠C)
    =∠C﹣∠B
    =(∠C﹣∠B),
    ∵∠B=50°,∠C=70°,
    ∴∠DAE=(70°﹣50°)=10°.
    (2)结论:∠DEF=(∠C﹣∠B).
    理由:如图2,过A作AG⊥BC于G,
    ∵EF⊥BC,
    ∴AG∥EF,
    ∴∠DAG=∠DEF,
    由(1)可得,∠DAG=(∠C﹣∠B),
    ∴∠DEF=(∠C﹣∠B).
    (3)仍成立.
    如图3,过A作AG⊥BC于G,
    ∵EF⊥BC,
    ∴AG∥EF,
    ∴∠DAG=∠DEF,
    由(1)可得,∠DAG=(∠C﹣∠B),
    ∴∠DEF=(∠C﹣∠B),
    故答案为∠DEF=(∠C﹣∠B).
    【线段垂直平分线】
    1.如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,连接AE、AF,若△AEF的周长为2,则BC的长是( )
    A.2B.3C.4D.无法确定
    【分析】根据线段的垂直平分线的性质得到EA=EB,FA=FC,根据三角形的周长公式即可求出BC.
    【解答】解:∵AB的垂直平分线交BC于点E,
    ∴EA=EB,
    ∵AC的垂直平分线交BC于点F.
    ∴FA=FC,
    ∴BC=BE+EF+FC=AE+EF+AF=△AEF的周长=2.
    故选:A.
    2.如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是( )
    A.2B.4C.6D.8
    【分析】根据线段的垂直平分线的性质得到EB=EA=4,结合图形计算,得到答案.
    【解答】解:∵DE是AB的垂直平分线,AE=4,
    ∴EB=EA=4,
    ∴BC=EB+EC=4+2=6,
    故选:C.
    3.如图,在△ABC中,BC边上两点D、E分别在AB、AC的垂直平分线上,若BC=24,则△ADE的周长为( )
    A.22B.23C.24D.25
    【分析】根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算,得到答案.
    【解答】解:∵点D、E分别在AB、AC的垂直平分线上,
    ∴DA=DB,EA=EC,
    ∴△ADE的周长=DA+DE+EA=DB+DE+EC=BC=24,
    故选:C.
    4.如图,已知∠B=20°,∠C=25°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于( )
    A.80°B.90°C.100°D.105°
    【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到PA=PB,QA=QC,根据等腰三角形的性质得到∠PAB=∠B,∠QAC=∠C,结合图形计算,得到答案.
    【解答】解:∵∠B=20°,∠C=25°,
    ∴∠BAC=180°﹣∠B﹣∠C=135°,
    ∵MP和QN分别垂直平分AB和AC,
    ∴PA=PB,QA=QC,
    ∴∠PAB=∠B=20°,∠QAC=∠C=25°,
    ∴∠PAQ=∠BAC﹣∠PAB﹣∠QAC=135°﹣20°﹣25°=90°,
    故选:B.
    5.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为( )cm
    A.3B.4C.7D.11
    【分析】根据线段垂直平分线的性质得到NA=NB,根据三角形的周长公式计算,得到答案.
    【解答】解:∵MN是线段AB的垂直平分线,
    ∴NA=NB,
    ∵△BCN的周长是7cm,
    ∴BC+CN+BN=7(cm),
    ∴BC+CN+NA=7(cm),即BC+AC=7(cm),
    ∵AC=4cm,
    ∴BC=3(cm),
    故选:A.
    6.元旦联欢会上,同学们玩抢凳子游戏,在与A、B、C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A、B、C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )
    A.三边中线的交点B.三条角平分线的交点
    C.三边上高的交点D.三边垂直平分线的交点
    【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边垂直平分线的交点上.
    【解答】解:∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,
    ∴凳子应放在△ABC的三条垂直平分线的交点最合适.
    故选:D.
    7.如图,在Rt△ABC中,∠BAC=90°,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若DE=3,AE=5,则△ACE的周长为 16 .
    【分析】根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.
    【解答】解:∵DE是AB的垂直平分线,
    ∴EA=EB=5,DE⊥AB,
    ∵DE=3,
    ∴AD==4,
    ∴AB=2AD=8,
    ∵∠BAC=∠BDE=90°,
    ∴DE∥AC,
    ∴BE=CE=5,
    ∴AC=2DE=6,BC=10,
    ∴△ACE的周长=AC+EC+EA=AC+EC+EB=AC+BC=AC+BC=16,
    故答案为:16.
    8.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠FAC=68°,则∠B的度数为 68° .
    【分析】根据角平分线的定义得出∠CAD=∠BAD,根据线段垂直平分线的性质得出FA=FD,根据等腰三角形的性质得到∠FDA=∠FAD,根据三角形的外角性质得出∠FDA=∠B+∠BAD,代入计算即可.
    【解答】解:∵AD平分∠BAC,
    ∴∠CAD=∠BAD,
    设∠CAD=∠BAD=x,
    ∵EF垂直平分AD,
    ∴FA=FD,
    ∴∠FDA=∠FAD,
    ∵∠FAC=68°,
    ∴∠FAD=∠FAC+∠CAD=68°+x,
    ∵∠FDA=∠B+∠BAD=∠B+x,
    ∴68°+x=∠B+x,
    ∴∠B=68°,
    故答案为:68°.
    9.如图,△ABC中,已知∠C=90°,DE是AB的垂直平分线,若∠DAC:∠DAB=1:2,那么∠BAC= 54 度.
    【分析】设∠DAB=2x,则∠DAC=x,根据线段垂直平分线的性质得到DA=DB,则∠B=∠DAB=2x,再利用三角形内角和得到90°+2x+2x+x=180°,解方程求出x,然后计算3x即可.
    【解答】解:设∠DAB=2x,则∠DAC=x,
    ∵DE是AB的垂直平分线,
    ∴DA=DB,
    ∴∠B=∠DAB=2x,
    ∵∠C+∠B+∠CAB=180°,
    ∴90°+2x+2x+x=180°,解得x=18°,
    ∴∠BAC=x+2x=3x=54°.
    故答案为:54.
    10.如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为 5 cm2.
    【分析】延长AP交BC于E,根据全等三角形的性质得到S△ABP=S△BEP,AP=PE,得到△APC和△CPE等底同高,求得S△APC=S△PCE,设△ACE的面积为m,于是得到结论.
    【解答】解:延长AP交BC于E,
    ∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,
    又知BP=BP,∠APB=∠BPE=90°,
    在△ABP与△BEP中,

    ∴△ABP≌△BEP(ASA),
    ∴S△ABP=S△BEP,AP=PE,
    ∴△APC和△CPE等底同高,
    ∴S△APC=S△PCE,
    设△ACE的面积为m,
    ∴S△ABE=S△ABC+S△ACE=10+m,
    ∴S△PBC=S△ABE﹣S△ACE=5(cm2).
    故答案为:5.
    11.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.
    求证:∠FAC=∠B.
    【分析】根据线段垂直平分线得出AF=DF,推出∠FAD=∠FDA,根据角平分线得出∠BAD=∠CAD,根据三角形外角性质推出即可.
    【解答】证明:∵EF是AD的垂直平分线,
    ∴AF=DF,
    ∴∠FAD=∠FDA,
    ∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD,
    ∴∠FAC=∠B.
    12.在△ABC中,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,
    (1)如图(1),连接AM、AN,求∠MAN的度数;
    (2)如图(2),如果AB=AC,求证:BM=MN=NC.
    【分析】(1)由在△ABC中,∠BAC=130°,可求得∠C+∠B的度数,然后由AB、AC的垂直平分线分别交BC于点M、N,根据线段垂直平分线的性质,可得BM=AM,CN=AN,即可得∠CAN=∠C,∠BAM=∠B,继而求得∠CAN+∠BAM的度数,则可求得答案;
    (2)先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.
    【解答】(1)解:
    ∵∠BAC=120°,
    ∴∠B+∠C=60°,
    由(1)证得BM=AM,CN=AN,
    ∴∠C=∠CAN,∠B=∠BAM,
    ∴∠CAN+∠BAM=∠C+∠B=60°,
    ∴∠MAN=120°﹣60°=60°;
    (2)证明:
    ∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,
    ∴BM=AM,CN=AN,
    ∴∠MAB=∠B,∠CAN=∠C,
    ∵∠BAC=120°,AB=AC,
    ∴∠B=∠C=30°,
    ∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,
    ∴△AMN是等边三角形,
    ∴AM=AN=MN,
    ∴BM=MN=NC.
    相关试卷

    中考数学一轮专题复习——浅谈角平分线定理: 这是一份中考数学一轮专题复习——浅谈角平分线定理,共6页。

    【重难点讲义】浙教版数学八年级上册-第08讲 角平分线、中垂线性质定理专题复习: 这是一份【重难点讲义】浙教版数学八年级上册-第08讲 角平分线、中垂线性质定理专题复习,文件包含第08讲角平分线中垂线性质定理专题复习原卷版docx、第08讲角平分线中垂线性质定理专题复习解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    第10讲 勾股定理与勾股定理逆定理-【专题突破】2022-2023学年八年级数学上学期重难点及章节分类精品讲义(浙教版) (原卷版+解析): 这是一份第10讲 勾股定理与勾股定理逆定理-【专题突破】2022-2023学年八年级数学上学期重难点及章节分类精品讲义(浙教版) (原卷版+解析),文件包含第10讲勾股定理与勾股定理逆定理-专题突破2022-2023学年八年级数学上学期重难点及章节分类精品讲义浙教版解析版docx、第10讲勾股定理与勾股定理逆定理-专题突破2022-2023学年八年级数学上学期重难点及章节分类精品讲义浙教版原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023八年级数学上册专题突破第08讲角平分线中垂线性质定理专题复习含解析新版浙教版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map