高考数学专题练 专题二 微专题15 三角函数的图象与性质(含答案)
展开
这是一份高考数学专题练 专题二 微专题15 三角函数的图象与性质(含答案),共16页。
典例1 (1)(2021·全国乙卷)把函数y=f(x)图象上所有点的横坐标缩短到原来的eq \f(1,2)倍,纵坐标不变,再把所得曲线向右平移eq \f(π,3)个单位长度,得到函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))的图象,则f(x)等于( )
A.sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)-\f(7π,12))) B.sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)+\f(π,12)))
C.sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(7π,12))) D.sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,12)))
(2)(2023·全国甲卷)函数y=f(x)的图象由函数y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的图象向左平移eq \f(π,6)个单位长度得到,则y=f(x)的图象与直线y=eq \f(1,2)x-eq \f(1,2)的交点个数为( )
A.1 B.2 C.3 D.4
典例2 (1)(2023·全国乙卷)已知函数f(x)=sin(ωx+φ)在区间eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6),\f(2π,3)))上单调递增,直线x=eq \f(π,6)和x=eq \f(2π,3)为函数y=f(x)的图象的两条相邻对称轴,则feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(5π,12)))等于( )
A.-eq \f(\r(3),2) B.-eq \f(1,2) C.eq \f(1,2) D.eq \f(\r(3),2)
(2)(2023·新高考全国Ⅱ)已知函数f(x)=sin(ωx+φ),如图,A,B是直线y=eq \f(1,2)与曲线y=f(x)的两个交点,若|AB|=eq \f(π,6),则f(π)=________.
典例3 (1)(2023·天津模拟)将函数f(x)=2sin xcs x-2cs2x+1,x∈R的图象向左平移eq \f(3π,8)个单位长度,得到函数g(x)的图象,则下列结论正确的是( )
A.g(x)是最小正周期为2π的奇函数
B.g(x)是最小正周期为2π的偶函数
C.g(x)在(π,2π)上单调递减
D.g(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))上的最小值为-eq \r(2)
(2)(多选)(2022·新高考全国Ⅱ)已知函数f(x)=sin(2x+φ)(00,cs θ>0,
又因为tan θ=eq \f(sin θ,cs θ)=eq \f(1,2),
则cs θ=2sin θ,
且cs2θ+sin2θ=4sin2θ+sin2θ=5sin2θ=1,
解得sin θ=eq \f(\r(5),5)或sin θ=-eq \f(\r(5),5)(舍去),
所以sin θ-cs θ=sin θ-2sin θ=-sin θ=-eq \f(\r(5),5).
跟踪训练1 (1)已知α∈(0,π),且cs α=-eq \f(15,17),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))·tan(π+α)等于( )
A.-eq \f(15,17) B.eq \f(15,17) C.-eq \f(8,17) D.eq \f(8,17)
答案 D
解析 sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))·tan(π+α)=cs α·tan α=sin α,
因为α∈(0,π),且cs α=-eq \f(15,17),
所以sin α=eq \r(1-cs2α)=eq \r(1-\b\lc\(\rc\)(\a\vs4\al\c1(-\f(15,17)))2)=eq \f(8,17).
即sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))·tan(π+α)=eq \f(8,17).
(2)若sin θ=eq \r(5)cs(2π-θ),则tan 2θ等于( )
A.-eq \f(\r(5),3) B.eq \f(\r(5),3)
C.-eq \f(\r(5),2) D.eq \f(\r(5),2)
答案 C
解析 ∵sin θ=eq \r(5)cs(2π-θ),
∴sin θ=eq \r(5)cs θ,得tan θ=eq \r(5),
∴tan 2θ=eq \f(2tan θ,1-tan2θ)=eq \f(2\r(5),1-\r(5)2)=-eq \f(\r(5),2).
考点二 两角和与差的三角函数
典例2 (1)(2022·新高考全国Ⅱ)若sin(α+β)+cs(α+β)=2eq \r(2)cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))sin β,则( )
A.tan(α-β)=1
B.tan(α+β)=1
C.tan(α-β)=-1
D.tan(α+β)=-1
答案 C
解析 由题意得sin αcs β+cs αsin β+cs αcs β-sin αsin β=2eq \r(2)×eq \f(\r(2),2)(cs α-sin α)sin β,整理得sin αcs β-cs αsin β+cs αcs β+sin αsin β=0,即sin(α-β)+cs(α-β)=0,所以tan(α-β)=-1.
(2)(2023·新高考全国Ⅰ)已知sin(α-β)=eq \f(1,3),cs αsin β=eq \f(1,6),则cs(2α+2β)等于( )
A.eq \f(7,9) B.eq \f(1,9) C.-eq \f(1,9) D.-eq \f(7,9)
答案 B
解析 因为sin(α-β)=sin αcs β-cs αsin β=eq \f(1,3),
而cs αsin β=eq \f(1,6),
因此sin αcs β=eq \f(1,2),
则sin(α+β)=sin αcs β+cs αsin β=eq \f(2,3),
所以cs(2α+2β)=cs 2(α+β)=1-2sin2(α+β)=1-2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))2=eq \f(1,9).
跟踪训练2 (1)(2023·景德镇模拟)已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,3)))=-eq \f(\r(5),5),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,12)-α))等于( )
A.-eq \f(\r(10),10) B.eq \f(\r(10),10) C.-eq \f(3\r(10),10) D.eq \f(3\r(10),10)
答案 B
解析 因为α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),
所以α+eq \f(π,3)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,6),\f(4π,3))),
因为sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,3)))=-eq \f(\r(5),5)sin eq \f(π,6)=eq \f(1,2),
与sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))=eq \f(1,3)矛盾,
∴θ+eq \f(π,6)∈eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(π,2),π)),
∴cseq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))=-eq \r(1-sin2\b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6))))=-eq \f(2\r(2),3),
∴cs θ=cseq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)-\f(π,6)))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))cs eq \f(π,6)+sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))sin eq \f(π,6)=-eq \f(2\r(2),3)×eq \f(\r(3),2)+eq \f(1,3)×eq \f(1,2)=eq \f(1-2\r(6),6).
12.(2023·福建联考)已知θ∈(0,2π),角θ的终边上有点eq \b\lc\(\rc\)(\a\vs4\al\c1(-cs \f(4π,5)+sin \f(4π,5),cs \f(4π,5)+sin \f(4π,5))),则θ=________.
答案 eq \f(39π,20)
解析 tan θ=eq \f(cs \f(4π,5)+sin \f(4π,5),-cs \f(4π,5)+sin \f(4π,5))=-eq \f(1+tan \f(4π,5),1-tan \f(4π,5))=-eq \f(tan \f(π,4)+tan \f(4π,5),1-tan \f(π,4)·tan \f(4π,5))=-taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4π,5)+\f(π,4)))
=-tan eq \f(21π,20)=taneq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(21π,20)))=taneq \b\lc\(\rc\)(\a\vs4\al\c1(2π-\f(21π,20)))=tan eq \f(19π,20),
故θ=eq \f(19π,20)+kπ(k∈Z),-cs eq \f(4π,5)+sin eq \f(4π,5)>0,cs eq \f(4π,5)+sin eq \f(4π,5)=eq \r(2)sin eq \f(21π,20)
相关试卷
这是一份高考数学专题练 专题二 微专题16 三角函数中ω,φ的范围问题(含答案),共18页。
这是一份高考数学专题练 专题二 微专题17 正弦定理、余弦定理(含答案),共21页。
这是一份高考数学专题练 专题二 微专题18 解三角形中的范围与最值问题(含答案),共20页。