还剩9页未读,
继续阅读
高考数学专题练 专题三 微专题23 数列求和(含答案)
展开这是一份高考数学专题练 专题三 微专题23 数列求和(含答案),共12页。
典例1 (2023·厦门模拟)记等差数列{an}的公差为d,前n项和为Sn;等比数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的公比为q,前n项和为Tn,已知b3=4a1,S4=b3+6,T3=7a1.
(1)求d和q;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若a1=1,q>0,cn=eq \b\lc\{\rc\ (\a\vs4\al\c1(-anbn+1,n为奇数,,anbn,n为偶数,))
求eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的前2n项和.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
典例2 (2023·郑州模拟)已知数列{an}满足n(an+1-an)=2an,a1=2,n∈N*.
(1)求数列{an}的通项公式;
(2)若bn=eq \f(n+12,anan+1),Tn为数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前n项和,求Tn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
典例3 (2023·全国甲卷)记Sn为数列{an}的前n项和,已知a2=1,2Sn=nan.
(1)求{an}的通项公式;
(2)求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an+1,2n)))的前n项和Tn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[总结提升]
1.分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和差.
2.裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.
3.错位相减法求和,主要用于求{anbn}的前n项和,其中{an},{bn}分别为等差数列和等比数列.
1.(2023·益阳质检)数列{an}的前n项和为Sn,已知a1=1,a2=3,当n≥2时,Sn+1+Sn-1=2Sn+n+1.
(1)求数列{an}的通项公式;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)设bn=(-1)n·an,求eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前2m(m∈N*)项和T2m.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·贵阳模拟)已知数列{an}和{bn}满足:a1=1,b1=2,an+1=eq \f(2,3)an+eq \f(1,3)bn,bn+1=eq \f(2,3)bn+eq \f(1,3)an,其中n∈N*.
(1)求证:an+1-an=eq \f(1,3n);
(2)求数列{an}的前n项和Sn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
3.(2023·眉山模拟)已知数列{an}是公差为2的等差数列,其前3项的和为12,{bn}是公比大于0的等比数列,b1=3,b3-b2=18.
(1)求数列{an}和{bn}的通项公式;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若数列{cn}满足cn=eq \f(4,anan+1)+bn,求{cn}的前n项和Tn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
4.(2023·株洲模拟)数列{an}满足a1=3,an+1-aeq \\al(2,n)=2an.
(1)若=an+1,求证:eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))是等比数列;
(2)若cn=eq \f(n,bn)+1,eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的前n项和为Tn,求满足Tn<100的最大正整数n.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
微专题23 数列求和
[考情分析] 数列求和是高考数学的必考内容,一般利用等差数列的通项来构建考查裂项求和,构建等差、等比数列考查错位相减法求和,解答题中等差数列、等比数列通项的考查往往是第1问,数列求和则是第2问.近几年在数列求和中加大了思维能力的考查,减少了对程序化计算(错位相减、裂项相消)的考查,主要基于新的情景,要求考生通过归纳或挖掘数列各项间关系发现规律再进行求和.难度中等偏上.
考点一 并项求和与分组求和
典例1 (2023·厦门模拟)记等差数列{an}的公差为d,前n项和为Sn;等比数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的公比为q,前n项和为Tn,已知b3=4a1,S4=b3+6,T3=7a1.
(1)求d和q;
(2)若a1=1,q>0,cn=eq \b\lc\{\rc\ (\a\vs4\al\c1(-anbn+1,n为奇数,,anbn,n为偶数,))求eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的前2n项和.
解 (1)由已知条件可得,
eq \b\lc\{\rc\ (\a\vs4\al\c1(b1q2=4a1, ①,4a1+6d=b1q2+6, ②,b1+b1q+b1q2=7a1, ③))
由①②消去b1q2得d=1,
由①③得eq \f(q2,1+q+q2)=eq \f(4,7),
所以3q2-4q-4=0,解得q=2或q=-eq \f(2,3),
所以d=1,q=2或-eq \f(2,3).
(2)当q>0时,q=2,则b1=a1=1,所以an=n,bn=2n-1,
所以cn=eq \b\lc\{\rc\ (\a\vs4\al\c1(-n·2n,n为奇数,,n·2n-1,n为偶数,))
c2n-1+c2n=-(2n-1)·22n-1+2n·22n-1=22n-1,
所以eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的前2n项和为c1+c2+c3+c4+…+c2n-1+c2n
=(c1+c2)+(c3+c4)+…+(c2n-1+c2n)
=2+23+25+…+22n-1 =eq \f(21-4n,1-4)=eq \f(2,3)(4n-1).
跟踪训练1 已知数列{an}的前n项和为Sn,a1=2,an+1=Sn+2.
(1)求数列{an}的通项公式;
(2)若数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))满足bn=an+lg2a2n+1,求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前n项和Tn.
解 (1)∵an+1=Sn+2,
∴an=Sn-1+2(n≥2),
两式相减得an+1-an=an,即an+1=2an(n≥2),
又a1=2,a2=S1+2=4,∴eq \f(a2,a1)=2,
∴eq \f(an+1,an)=2(n∈N*),
∴{an}是以2为首项,2为公比的等比数列,
∴an=2·2n-1=2n.
(2)由(1)得an=2n,
则bn=an+lg2a2n+1=2n+lg222n+1=2n+2n+1,
∴Tn=b1+b2+b3+…+bn
=(2+3)+(22+5)+…+(2n+2n+1)
=(2+22+…+2n)+(3+5+…+2n+1)
=eq \f(21-2n,1-2)+eq \f(n3+2n+1,2)=2n+1+n2+2n-2.
考点二 裂项相消法
典例2 (2023·郑州模拟)已知数列{an}满足n(an+1-an)=2an,a1=2,n∈N*.
(1)求数列{an}的通项公式;
(2)若bn=eq \f(n+12,anan+1),Tn为数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前n项和,求Tn.
解 (1)∵n(an+1-an)=2an,
∴nan+1=(n+2)an,
∴eq \f(an+1,an)=eq \f(n+2,n),则eq \f(a2,a1)=eq \f(3,1),eq \f(a3,a2)=eq \f(4,2),eq \f(a4,a3)=eq \f(5,3),…,eq \f(an-1,an-2)=eq \f(n,n-2),eq \f(an,an-1)=eq \f(n+1,n-1),
利用累乘法可得,eq \f(an,a1)=eq \f(nn+1,1×2),
∴an=n(n+1).
(2)根据题意bn=eq \f(n+12,anan+1)=eq \f(n+12,nn+1n+1n+2)=eq \f(1,nn+2)=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+2))),
∴Tn=eq \f(1,2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)+\f(1,2)-\f(1,4)+\f(1,3)-\f(1,5)+…+\f(1,n-1) -\f(1,n+1)+\f(1,n)-\f(1,n+2)))
=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)-\f(1,n+1)-\f(1,n+2)))=eq \f(3,4)-eq \f(2n+3,2n+1n+2).
跟踪训练2 (2023·六安模拟)已知Sn是数列{an}的前n项和,且Sn=2n+1-1(n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=eq \f(2n+1,an-1an+1-1),Tn是{bn}的前n项和,证明:Tn
当n≥2时,an=Sn-Sn-1=(2n+1-1)-(2n-1)=2n,
经验证,当n=1时,a1=3≠21.
∴an=eq \b\lc\{\rc\ (\a\vs4\al\c1(3,n=1,,2n,n≥2.))
(2)证明 当n=1时,T1=eq \f(2,3)
Tn=eq \f(2,3)+2eq \b\lc\(\rc\ (\a\vs4\al\c1(\f(1,22-1)-\f(1,23-1)+\f(1,23-1)-\f(1,24-1)+…+))eq \b\lc\ \rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1-1)))=eq \f(4,3)-eq \f(2,2n+1-1)
典例3 (2023·全国甲卷)记Sn为数列{an}的前n项和,已知a2=1,2Sn=nan.
(1)求{an}的通项公式;
(2)求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an+1,2n)))的前n项和Tn.
解 (1)因为2Sn=nan,
当n=1时,2a1=a1,即a1=0;
当n=3时,2(1+a3)=3a3,即a3=2,
当n≥2时,2Sn-1=(n-1)an-1,
所以2Sn-2Sn-1=nan-(n-1)an-1=2an,
化简得(n-2)an=(n-1)an-1,
则当n≥3时,eq \f(an,an-1)=eq \f(n-1,n-2),
则eq \f(an,an-1)·eq \f(an-1,an-2)·…·eq \f(a3,a2)
=eq \f(n-1,n-2)·eq \f(n-2,n-3)·…·eq \f(2,1),
即eq \f(an,a2)=n-1,
又因为a2=1,
所以an=n-1,
当n=1,2时都满足上式,
所以an=n-1,n∈N*.
(2)令bn=eq \f(an+1,2n)=eq \f(n,2n),
则Tn=b1+b2+…+bn-1+bn
=eq \f(1,2)+eq \f(2,22)+…+eq \f(n-1,2n-1)+eq \f(n,2n),①
eq \f(1,2)Tn=eq \f(1,22)+eq \f(2,23)+…+eq \f(n-1,2n)+eq \f(n,2n+1),②
由①-②得eq \f(1,2)Tn=eq \f(1,2)+eq \f(1,22)+eq \f(1,23)+…+eq \f(1,2n)-eq \f(n,2n+1)
=eq \f(\f(1,2)\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n))),1-\f(1,2))-eq \f(n,2n+1)=1-eq \f(2+n,2n+1),
即Tn=2-eq \f(2+n,2n).
跟踪训练3 (2023·成都模拟)已知数列{an}的前n项和为Sn,lg3bn+1-1=lg3bn,且2an=
an+1+an-1(n≥2).S3=b3=9,b4=a14.
(1)求数列{an}和eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的通项公式;
(2)若cn=an+1·bn+1,求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的前n项和Tn.
解 (1)∵lg3bn+1-1=lg3bn,∴lg3bn+1=lg3(3bn),则eq \f(bn+1,bn)=3,∴eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))为等比数列,
又b3=9,得b1=1,∴bn=3n-1,
由2an=an+1+an-1(n≥2)知{an}是等差数列,且b4=a14=27,S3=9,
∴eq \b\lc\{\rc\ (\a\vs4\al\c1(a1+13d=27,,3a1+3d=9,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a1=1,,d=2.))
∴an=2n-1.
(2)∵an=2n-1,bn=3n-1,
∴cn=an+1·bn+1=(2n+1)3n,
∴Tn=3×31+5×32+7×33+…+(2n-1)·3n-1+(2n+1)·3n,
则3Tn=3×32+5×33+7×34+…+(2n-1)·3n+(2n+1)·3n+1,
两式相减得-2Tn=32+2×32+2×33+…+2·3n-(2n+1)·3n+1
=9+2eq \b\lc\[\rc\](\a\vs4\al\c1(\f(91-3n-1,1-3)))-(2n+1)·3n+1=-2n·3n+1,
∴Tn=n·3n+1.
[总结提升]
1.分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和差.
2.裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.
3.错位相减法求和,主要用于求{anbn}的前n项和,其中{an},{bn}分别为等差数列和等比数列.
1.(2023·益阳质检)数列{an}的前n项和为Sn,已知a1=1,a2=3,当n≥2时,Sn+1+Sn-1=2Sn+n+1.
(1)求数列{an}的通项公式;
(2)设bn=(-1)n·an,求eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前2m(m∈N*)项和T2m.
解 (1)当n≥2时,由Sn+1+Sn-1=2Sn+n+1可得Sn+1-Sn=Sn-Sn-1+n+1,
即an+1=an+n+1,
因为a1=1,a2=3,所以当n=1时也满足an+1=an+n+1,
当n≥2时,an-an-1=n,
所以an=a1+(a2-a1)+…+(an-an-1)=1+2+3+…+n=eq \f(nn+1,2),
当n=1时,a1=1也满足上式,
所以an=eq \f(nn+1,2)(n∈N*).
(2)bn=(-1)n·eq \f(nn+1,2),
对任意的n∈N*,b2n-1+b2n=-eq \f(2n2n-1,2)+eq \f(2n2n+1,2)=2n,
所以T2m=(b1+b2)+(b3+b4)+…+(b2m-1+b2m)=2(1+2+…+m)=2×eq \f(mm+1,2)=m(m+1).
2.(2023·贵阳模拟)已知数列{an}和{bn}满足:a1=1,b1=2,an+1=eq \f(2,3)an+eq \f(1,3)bn,bn+1=eq \f(2,3)bn+eq \f(1,3)an,其中n∈N*.
(1)求证:an+1-an=eq \f(1,3n);
(2)求数列{an}的前n项和Sn.
(1)证明 因为an+1=eq \f(2,3)an+eq \f(1,3)bn,①
bn+1=eq \f(2,3)bn+eq \f(1,3)an,②
①+②可得an+1+bn+1=an+bn,且a1+b1=3,
所以数列{an+bn}为常数列,且an+bn=3,③
①-②可得an+1-bn+1=eq \f(1,3)(an-bn),且a1-b1=-1,
所以数列{an-bn}为等比数列,且该数列的首项为-1,公比为eq \f(1,3),
所以an-bn=-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n-1,④
③+④可得2an=3-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n-1,
则an=eq \f(3,2)-eq \f(1,2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n-1,
所以an+1-an=eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2)-\f(1,2)×\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n))-eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2)-\f(1,2)×\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n-1))=eq \f(1,2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n-1-eq \f(1,2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n=eq \f(1,3n).
(2)解 由(1)可知,an=eq \f(3,2)-eq \f(1,2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n-1,
则Sn=eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2)-\f(1,2)×\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))0))+eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2)-\f(1,2)×\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))1))+eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2)-\f(1,2)×\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))2))+…+eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2)-\f(1,2)×\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n-1))
=eq \f(3n,2)-eq \f(1,2)eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))0+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))1+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))2+…+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n-1))
=eq \f(3n,2)-eq \f(\f(1,2)\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3n))),1-\f(1,3))=eq \f(3n,2)-eq \f(3,4)+eq \f(1,4×3n-1).
3.(2023·眉山模拟)已知数列{an}是公差为2的等差数列,其前3项的和为12,{bn}是公比大于0的等比数列,b1=3,b3-b2=18.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{cn}满足cn=eq \f(4,anan+1)+bn,求{cn}的前n项和Tn.
解 (1)设{an}的公差为d,{bn}的公比为q,
则由题可得数列{an}的前3项和3a1+eq \f(3×2,2)d=3a1+3d=12,
因为d=2,所以a1=2,
所以an=2+2(n-1)=2n,
又因为b1=3,b3-b2=b1q2-b1q=18,
所以q2-q-6=0,
解得q=3或q=-2(舍去),
所以bn=3×3n-1=3n.
(2)由(1)可知,cn=eq \f(4,anan+1)+bn=eq \f(4,2n·2n+1)+3n=eq \f(1,n·n+1)+3n=eq \f(1,n)-eq \f(1,n+1)+3n,
所以{cn}的前n项和
Tn=c1+c2+c3+…+cn-1+cn
=eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(1,3)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)-\f(1,4)))+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n-1)-\f(1,n)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+1)))+eq \f(31-3n,1-3)
=1-eq \f(1,n+1)+eq \f(3n+1-3,2)=eq \f(n,n+1)+eq \f(3n+1-3,2).
4.(2023·株洲模拟)数列{an}满足a1=3,an+1-aeq \\al(2,n)=2an.
(1)若2bn=an+1,求证:eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))是等比数列;
(2)若cn=eq \f(n,bn)+1,eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的前n项和为Tn,求满足Tn<100的最大正整数n.
(1)证明 ∵2bn=an+1,
∴bn=lg2(an+1),b1=lg2(3+1)=2,
由已知可得an+1=aeq \\al(2,n)+2an,
∴an+1+1=aeq \\al(2,n)+2an+1=(an+1)2,
∴lg2(an+1+1)=2lg2(an+1),
∴eq \f(bn+1,bn)=eq \f(lg2an+1+1,lg2an+1)=2,
∴数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))是以2为首项,2为公比的等比数列.
(2)解 由(1)得bn=2n,
∴cn=eq \f(n,bn)+1=eq \f(n,2n)+1,
设dn=eq \f(n,2n),数列eq \b\lc\{\rc\}(\a\vs4\al\c1(dn))的前n项和为Sn,
则Sn=eq \f(1,21)+eq \f(2,22)+eq \f(3,23)+…+eq \f(n-1,2n-1)+eq \f(n,2n),①
eq \f(1,2)Sn=eq \f(1,22)+eq \f(2,23)+eq \f(3,24)+…+eq \f(n-1,2n)+eq \f(n,2n+1),②
①-②得eq \f(1,2)Sn=eq \f(1,21)+eq \f(1,22)+eq \f(1,23)+…+eq \f(1,2n-1)+eq \f(1,2n)-eq \f(n,2n+1) =eq \f(\f(1,2)\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n)),1-\f(1,2))-eq \f(n,2n+1)=1-eq \f(n+2,2n+1),
∴Sn=2-eq \f(n+2,2n),
∴Tn=Sn+n=n+2-eq \f(n+2,2n)<100(n∈N*),
当n=1时,2n
当n≥3时,2n=(1+1)n>Ceq \\al(0,n)+Ceq \\al(1,n)+Ceq \\al(n,n)=n+2,
即0
∴满足Tn<100的最大正整数n为98
相关试卷
高考数学专题练 专题三 微专题21 等差数列、等比数列(含答案):
这是一份高考数学专题练 专题三 微专题21 等差数列、等比数列(含答案),共17页。
高考数学专题练 专题三 微专题24 数列的奇偶项、增减项问题(含答案):
这是一份高考数学专题练 专题三 微专题24 数列的奇偶项、增减项问题(含答案),共13页。
新高考数学一轮复习微专题专练32数列求和(含详解):
这是一份新高考数学一轮复习微专题专练32数列求和(含详解),共5页。