![2024年新高考数学一轮复习题型归类与强化测试专题24任意角和蝗制及三角函数的概念(学生版)第1页](http://m.enxinlong.com/img-preview/3/3/15568541/0-1712075417933/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年新高考数学一轮复习题型归类与强化测试专题24任意角和蝗制及三角函数的概念(学生版)第2页](http://m.enxinlong.com/img-preview/3/3/15568541/0-1712075417959/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年新高考数学一轮复习题型归类与强化测试专题24任意角和蝗制及三角函数的概念(学生版)第3页](http://m.enxinlong.com/img-preview/3/3/15568541/0-1712075417972/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2024年新高考数学一轮复习题型归类与强化测试专题全套
2024年新高考数学一轮复习题型归类与强化测试专题24任意角和蝗制及三角函数的概念(学生版)
展开
这是一份2024年新高考数学一轮复习题型归类与强化测试专题24任意角和蝗制及三角函数的概念(学生版),共9页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
【考纲要求】
1.了解任意角的概念和弧度制的概念.
2.能进行弧度与角度的互化.
3.理解任意角三角函数(正弦、余弦、正切)的定义.
【考点预测】
1.角的概念
(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.
(2)分类eq \b\lc\{\rc\ (\a\vs4\al\c1(按旋转方向不同分为正角、负角、, 零角.,按终边位置不同分为象限角, 和轴线角.))
(3)相反角:我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为-α.
(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.
2.弧度制的定义和公式
(1)定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad表示.
(2)公式
3.任意角的三角函数
(1)设α是一个任意角,α∈R,它的终边OP与单位圆相交于点P(x,y),
则sin α=y,cs α=x,tan α=eq \f(y,x)(x≠0).
(2)任意角的三角函数的定义(推广):
设P(x,y)是角α终边上异于原点的任意一点,其到原点O的距离为r,则sin α=eq \f(y,r),cs α=eq \f(x,r),tan α=eq \f(y,x)(x≠0).
(3)三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦,如图.
【常用结论】
1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.
2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制必须一致,不可混用.
3.象限角
4.轴线角
【方法技巧】
1.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k(k∈Z)赋值来求得所需的角.
2.确定kα,eq \f(α,k)(k∈N*)的终边位置的方法
先写出kα或eq \f(α,k)的范围,然后根据k的可能取值确定kα或eq \f(α,k)的终边所在位置.
3.应用弧度制解决问题的方法
(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.
(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.
(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
4.利用三角函数的定义,已知角α终边上一点P的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出角α终边的位置.
5.判断三角函数值的符号,关键是确定角的终边所在的象限,然后结合三角函数值在各象限的符号确定所求三角函数值的符号,特别要注意不要忽略角的终边在坐标轴上的情况.
二、【题型归类】
【题型一】象限角及终边相同的角
【典例1】(多选)下列与角eq \f(2π,3)的终边相同的角是( )
A.eq \f(14π,3) B.2kπ-eq \f(2π,3)(k∈Z)
C.2kπ+eq \f(2π,3)(k∈Z) D.(2k+1)π+eq \f(2π,3)(k∈Z)
【典例2】集合eq \b\lc\{\rc\}(\a\vs4\al\c1(α\b\lc\|(\a\vs4\al\c1(kπ+\f(π,4)≤α≤kπ+\f(π,2),k∈Z))))中的角所表示的范围(阴影部分)是( )
【典例3】若角α是第二象限角,则eq \f(α,2)是( )
A.第一象限角 B.第二象限角
C.第一或第三象限角 D.第二或第四象限角
【题型二】弧度制及其应用
【典例1】(多选)已知扇形的周长是6 cm,面积是2 cm2,则下列选项正确的有( )
A.扇形的半径为2 B.扇形的半径为1
C.圆心角的弧度数是1 D.圆心角的弧度数是2
【典例2】一扇形是从一个圆中剪下的一部分,半径等于圆半径的eq \f(2,3),面积等于圆面积的eq \f(5,27),则扇形的弧长与圆周长之比为________.
【典例3】已知扇形的圆心角是α ,半径为R,弧长为l.
(1)若α=60°,R=10 cm,求扇形的弧长l;
(2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?
【题型三】三角函数的定义
【典例1】已知角α的终边上一点P(-eq \r(3),m)(m≠0),且sin α=eq \f(\r(2)m,4),则cs α=________,tan α=________.
【典例2】已知角α的终边过点P(-8m,-6sin 30°),且cs α=-eq \f(4,5),则m的值为( )
A.-eq \f(1,2) B.-eq \f(\r(3),2) C.eq \f(1,2) D.eq \f(\r(3),2)
【典例3】若点P(cs θ,sin θ)与点Qeq \b\lc\(\rc\)(\a\vs4\al\c1(cs\b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6))),sin\b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))))关于y轴对称,写出一个符合题意的θ=________.
【题型四】三角函数值符号的判定
【典例1】若sin θ·cs θ0,则角θ是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
【典例2】点P从(1,0)出发,沿单位圆逆时针方向运动eq \f(2π,3)弧长到达Q点,则Q点的坐标为( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2),\f(\r(3),2))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(3),2),-\f(1,2)))
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2),-\f(\r(3),2))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(3),2),\f(1,2)))
【典例3】若角α的终边落在直线y=-x上,则eq \f(sin α,|cs α|)+eq \f(|sin α|,cs α)=________.
三、【培优训练】
【训练一】如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,eq \(OP,\s\up6(→))的坐标为________.
【训练二】在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB中,用电焊切割成扇形,现有如图所示两种方案,既要充分利用废料,又要切割时间最短,问哪一种方案最优?
【训练三】若角α的终边落在直线y=eq \r(3)x上,角β的终边与单位圆交于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),m)),且sin α·cs β
相关试卷
这是一份2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题36数列的概念与表示(学生版),共7页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题35复数(学生版),共6页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)