|试卷下载
终身会员
搜索
    上传资料 赚现金
    最新高考数学二轮复习讲义重难点突破篇 专题29 弦长问题及长度和、差、商、积问题
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题29 弦长问题及长度和、差、商、积问题(教师版).docx
    • 学生
      专题29 弦长问题及长度和、差、商、积问题(学生版).docx
    最新高考数学二轮复习讲义重难点突破篇  专题29 弦长问题及长度和、差、商、积问题01
    最新高考数学二轮复习讲义重难点突破篇  专题29 弦长问题及长度和、差、商、积问题02
    最新高考数学二轮复习讲义重难点突破篇  专题29 弦长问题及长度和、差、商、积问题03
    最新高考数学二轮复习讲义重难点突破篇  专题29 弦长问题及长度和、差、商、积问题01
    最新高考数学二轮复习讲义重难点突破篇  专题29 弦长问题及长度和、差、商、积问题02
    最新高考数学二轮复习讲义重难点突破篇  专题29 弦长问题及长度和、差、商、积问题03
    还剩48页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新高考数学二轮复习讲义重难点突破篇 专题29 弦长问题及长度和、差、商、积问题

    展开
    这是一份最新高考数学二轮复习讲义重难点突破篇 专题29 弦长问题及长度和、差、商、积问题,文件包含专题29弦长问题及长度和差商积问题教师版docx、专题29弦长问题及长度和差商积问题学生版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    1、明确模拟练习的目的。不但检测知识的全面性、方法的熟练性和运算的准确性,更是训练书写规范,表述准确的过程。
    2、查漏补缺,以“错”纠错。每过一段时间,就把“错题笔记”或标记错题的试卷有侧重的看一下。查漏补缺的过程也就是反思的过程,逐渐实现保强攻弱的目标。
    3、严格有规律地进行限时训练。特别是强化对解答选择题、填空题的限时训练,将平时考试当作高考,严格按时完成,并在速度体验中提高正确率。
    4、保证常规题型的坚持训练。做到百无一失,对学有余力的学生,可适当拓展高考中难点的训练。
    5、注重题后反思总结。出现问题不可怕,可怕的是不知道问题的存在,在复习中出现的问题越多,说明你距离成功越近,及时处理问题,争取“问题不过夜”。
    6、重视每次模拟考试的临考前状态的调整及考后心理的调整。以平和的心态面对高考。
    专题29 弦长问题及长度和、差、商、积问题
    【考点预测】
    1、弦长公式的两种形式
    ①若,是直线与圆锥曲线的两个交点,且由两方程消去后得到一元二次方程,则.
    ②若,是直线与圆锥曲线的两个交点,且由两方程消去后得到一元二次方程,则.
    【题型归纳目录】
    题型一:弦长问题
    题型二:长度和问题
    题型三:长度差问题
    题型四:长度商问题
    题型五:长度积问题
    题型六:长度的范围与最值问题
    题型七:长度的定值问题
    【典例例题】
    题型一:弦长问题
    例1.(2022·北京八中高三阶段练习)已知为椭圆上任意一点,为左、右焦点,为中点.如图所示:若,离心率.
    (1)求椭圆的标准方程;
    (2)已知直线经过且斜率为与椭圆交于两点,求弦长的值.
    例2.(2022·全国·高三专题练习)已知椭圆的左、右焦点分别为、,过且斜率为1的直线交椭圆于A、两点,则等于( )
    A.B.C.D.
    例3.(2022·全国·高三专题练习)过椭圆的左焦点作倾斜角60°的直线,直线与椭圆交于A,B两点,则______.
    例4.(2022·北京·高三开学考试)已知椭圆C:(其中)的离心率为,左右焦点分别为,.
    (1)求椭圆C的方程;
    (2)过点作斜率为k的直线与椭圆C交于不同的A,B两点,过原点作AB的垂线,垂足为D.若点D恰好是与A的中点,求线段AB的长度.
    题型二:长度和问题
    例5.(2022·湖南·宁乡市教育研究中心模拟预测)已知抛物线的焦点与椭圆的右焦点重合,椭圆的长轴长为.
    (1)求椭圆的方程;
    (2)过点且斜率为的直线交椭圆于两点,交抛物线于两点,请问是否存在实常数,使为定值?若存在,求出的值;若不存在,说明理由.
    例6.(2022·全国·高三专题练习)已知抛物线E:的焦点为F,点在抛物线E上,且的面积为(O为坐标原点).
    (1)求抛物线E的方程;
    (2)过焦点F的直线l与抛物线E交于A、B两点,过A、B分别作垂直于l的直线AC、BD,分别交抛物线于C、D两点,求的最小值.
    例7.(2022·全国·高三专题练习)已知椭圆经过点,且椭圆的离心率,过椭圆的右焦点作两条互相垂直的直线,分别交椭圆于点及、.
    (1)求椭圆的方程;
    (2)求证:为定值;
    (3)求的最小值.
    例8.(2022·全国·高三专题练习(理))已知为抛物线的焦点,过作两条互相垂直的直线,,直线与交于两点,直线与交于两点,则的是小值为( )
    A.B.C.D.
    例9.(2022·青海·模拟预测(理))已知椭圆C:,圆O:,若圆O过椭圆C的左顶点及右焦点.
    (1)求椭圆C的方程;
    (2)过点作两条相互垂直的直线,,分别与椭圆相交于点A,B,D,E,试求的取值范围.
    题型三:长度差问题
    例10.如图,已知抛物线的焦点为椭圆的右焦点,点为抛物线与椭圆在第一象限的交点,且.参考答案
    (Ⅰ)求椭圆的方程;
    (Ⅱ)过点的直线交抛物线于,两点,交椭圆于,两点,,,依次排序),且,求直线的方程.
    例11.已知椭圆的一个焦点为,,且,在椭圆上.
    (1)求椭圆的标准方程;
    (2)已知垂直于轴的直线交于、两点,垂直于轴的直线交于、两点,与的交点为,且,问:是否存在两定点,,使得为定值?若存在,求出,的坐标,若不存在,请说明理由.
    例12.已知椭圆的一个焦点与抛物线的焦点重合,且经过点.
    (1)求椭圆的方程;
    (2)已知斜率大于0且过点的直线与椭圆及抛物线自上而下分别交于,,,,如图所示,若,求.
    题型四:长度商问题
    例13.(2022·北京·人大附中模拟预测)已知椭圆的左右焦点分别为.过点的直线与椭圆交于两点,过点作的垂线交椭圆于两点,的周长为.
    (1)求椭圆的方程;
    (2)求的取值范围.
    例14.(2022·全国·高三专题练习)已知椭圆,,分别为左右焦点,点,在椭圆E上.
    (1)求椭圆E的离心率;
    (2)过左焦点且不垂直于坐标轴的直线l交椭圆E于A,B两点,若的中点为M,O为原点,直线交直线于点N,求取最大值时直线l的方程.
    例15.(2022·陕西·安康市教学研究室三模(文))已知椭圆长轴的顶点与双曲线实轴的顶点相同,且的右焦点到的渐近线的距离为.
    (1)求与的方程;
    (2)若直线的倾斜角是直线的倾斜角的倍,且经过点,与交于、两点,与交于、两点,求.
    例16.(2022·全国·高三专题练习)已知圆:,圆:,圆与圆、圆外切,
    (1)求圆心的轨迹方程
    (2)若过点且斜率的直线与交与两点,线段的垂直平分线交轴与点,证明的值是定值.
    例17.(2022·全国·高三专题练习)已知双曲线的离心率为2,F为双曲线C的右焦点,M为双曲线C上的任一点,且点M到双曲线C的两条渐近线距离的乘积为,
    (1)求双曲线C的方程;
    (2)设过点F且与坐标轴不垂直的直线l与双曲线C相交于点P,Q,线段PQ的垂直平分线与x轴交于点B,求的值.
    例18.(2022·全国·高三专题练习)已知双曲线的右焦点为,过点F与x轴垂直的直线与双曲线C交于M,N两点,且.
    (1)求C的方程;
    (2)过点的直线与双曲线C的左、右两支分别交于D,E两点,与双曲线C的两条渐近线分别交于G,H两点,若,求实数的取值范围.
    例19.(2022·湖南·高三阶段练习)已知椭圆为右焦点,直线与椭圆C相交于A,B两点,取A点关于x轴的对称点S,设线段与线段的中垂线交于点Q.
    (1)当时,求;
    (2)当时,求是否为定值?若为定值,则求出定值;若不为定值,则说明理由.
    例20.(2022·浙江·杭师大附中模拟预测)已知椭圆与抛物线有一个相同的焦点,椭圆的长轴长为.
    (1)记椭圆与抛物线的公共弦为,求;
    (2)P为抛物线上一点,为椭圆的左焦点,直线交椭圆于A,B两点,直线与抛物线交于P,Q两点,求的最大值.
    例21.(2022·全国·高三专题练习)已知椭圆E:的离心率为,,为其左、右焦点,左、右顶点分别为A,B,过且斜率为k的直线l交椭圆E于M,N两点(异于A,B两点),且的周长为8.
    (1)求椭圆C的方程;
    (2)若P为椭圆上一点,O为坐标原点,,求的取值范围.
    题型五:长度积问题
    例22.(2022·全国·高三专题练习)已知动圆M经过定点,且与圆相内切.
    (1)求动圆圆心M的轨迹C的方程;
    (2)设点T在上,过点T的两条直线分别交轨迹C于A,B和P,Q两点,且,求直线AB的斜率和直线PQ的斜率之和.
    例23.(2022·河北·高三期中)在平面直角坐标系中,已知椭圆的上顶点,左、右焦点分别为、,是周长为的等腰直角三角形.
    (1)求椭圆的标准方程;
    (2)过点,且互相垂直的直线、分别交椭圆于、两点及、两点.
    ①若直线过左焦点,求四边形的面积;
    ②求的最大值.
    例24.已知椭圆的右焦点为,过的直线交椭圆于、两点,且,求直线的斜率的取值范围.
    例25.已知椭圆,椭圆上任意一点到椭圆两个焦点、的距离之和为4,且的最大值为.
    (1)求椭圆的方程;
    (2)若过椭圆右焦点的直线交椭圆于,两点,求的取值范围.
    例26.(2022·全国·南京外国语学校模拟预测)已知抛物线:,为其焦点,过的直线与交于不同的两点.
    (1)若直线斜率为3,求;
    (2)如图,在点处的切线与在点处的切线交于点,连接,证明:.
    例27.如图,已知抛物线,点,,,,抛物线上的点,,过点作直线的垂线,垂足为.
    (Ⅰ)求直线斜率的取值范围;
    (Ⅱ)求的最大值.
    例28.(2022·全国·高三专题练习)设椭圆的左,右焦点分别为,其离心率为,且点在C上.
    (1)求C的方程;
    (2)O为坐标原点,P为C上任意一点.若M为的中点,过M且平行于的直线l交椭圆C于A,B两点,是否存在实数,使得?若存在,求值;若不存在,说明理由.
    例29.(2022·新疆昌吉·二模(文))“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学内容,例如:用一张圆形纸片,按如下步骤折纸(如下图1)
    步骤1:设圆心是E,在圆内异于圆心处取一点,标记为F;
    步骤2:把纸片折叠,使圆周正好通过点F;
    步骤3:把纸片展开,并留下一道折痕;
    步骤4:不停重复步骤2和3,就能得到越来越多的折痕(如图2).
    已知这些折痕所围成的图形是一个椭圆.若取半径为4的圆形纸片,设定点F到圆心E的距离为2,按上述方法折纸.
    (1)以点F,E所在的直线为x轴,线段EF的中垂线为y轴,建立坐标系,求折痕所围成的椭圆C(即图1中M点的轨迹)的标准方程.
    (2)如图3,若直线m:与椭圆C相切于点P,斜率为的直线n与椭圆C分别交于点A,B(异于点P),与直线m交于点Q.证明:,,成等比数列.
    例30.(2022·安徽·合肥一六八中学模拟预测(文))已知椭圆 C:,右焦点为 F(,0) ,且离心率为 .
    (1)求椭圆 C 的标准方程;
    (2)设 M,N 是椭圆 C 上不同的两点,且直线 MN 与圆 O:相切,若 T 为弦 MN的中点,求|OT||MN|的取值范围.
    例31.(2022·山西·忻州一中高三阶段练习)已知双曲线的离心率是,点是双曲线的一个焦点,且点到双曲线的一条渐近线的距离是2.
    (1)求双曲线的标准方程.
    (2)设点在直线上,过点作两条直线,直线与双曲线交于两点,直线与双曲线交于两点.若直线与直线的倾斜角互补,证明:.
    题型六:长度的范围与最值问题
    例32.(2022·上海市复兴高级中学高三开学考试)已知焦点在轴上,中心在坐标原点的椭圆的离心率为,且过点.直线与圆(其中)相切于点A.
    (1)求椭圆的方程;
    (2)若,直线与椭圆交于两点,求的最大值;
    (3)若直线与椭圆有且只有一个交点,且交点为,求的最大值.
    例33.(2022·全国·高三专题练习)如图,点P为抛物线与椭圆在第一象限的交点,过抛物线焦点F且斜率不为0的直线l与抛物线交于A,B两点,连接交椭圆E于点C,连接交椭圆E于点D,记直线的斜率分别为.
    (1)求点P的坐标并确定当为常数时的值;
    (2)求取最大值时直线l的方程.
    例34.(2022·海南华侨中学模拟预测)已知椭圆,左焦点为,点在椭圆上.
    (1)求椭圆的标准方程.
    (2)若直线和椭圆交于两点,设点为线段的中点,为坐标原点,求线段长度的取值范围.
    例35.(2022·四川省巴中中学模拟预测(文))已知椭圆:的左、右顶点分别为、,点在椭圆上,且直线的斜率与直线的斜率之积为.
    (1)求椭圆的方程;
    (2)若圆的切线与椭圆交于、两点,求的最大值及此时直线的斜率.
    例36.(2022·安徽·高三开学考试)已知为坐标原点,椭圆过点 ,记线段的中点为.
    (1)若直线的斜率为 3 ,求直线的斜率;
    (2)若四边形为平行四边形,求的取值范围.
    例37.(2022·全国·高三专题练习)已知椭圆的离心率为,且过点.
    (1)求的方程;
    (2)若是上两点,直线与圆相切,求的取值范围.
    例38.(2022·全国·高三阶段练习(文))已知椭圆的离心率为,左,右焦点分别为,,在椭圆E上任取一点P,的周长为.
    (1)求椭圆E的标准方程;
    (2)设点P关于原点的对称点为Q,过右焦点F2作与直线PQ垂直的直线交椭圆E于A、B两点,求的取值范围.
    例39.(2022·河南洛阳·模拟预测(理))点P与定点的距离和它到定直线的距离之比为.
    (1)求点P的轨迹方程;
    (2)记点P的轨迹为曲线C,若过点P的动直线l与C的另一个交点为Q,原点O到l的距离为,求的取值范围.
    题型七:长度的定值问题例40.(2022·全国·高三专题练习)已知点,直线l:y=4,P为曲线C上的任意一点,且是P到l的距离的.
    (1)求曲线C的方程;
    (2)若经过点F且斜率为的直线交曲线C于点M、N,线段MN的垂直平分线交y轴于点H,求证:为定值.
    例41.(2022·天津二中模拟预测)如图,椭圆的离心率为,其左顶点A在圆上.
    (1)求椭圆E的标准方程;
    (2)直线与椭圆E的另一个交点为P,与圆O的另一个交点为Q.
    (i)当时,求直线的斜率;
    (i i)是否存在直线,使得.若存在,求出直线的斜率;若不存在,请说明理由.
    例42.(2022·湖南·长郡中学模拟预测)已知平面内两点,动点P满足:.(1)求动点P的轨迹C的方程;
    (2)设M,N是轨迹C上的两点,直线与曲线相切.证明:M,N,三点共线的充要条件是.
    例43.(2022·全国·高三专题练习)已知椭圆的一个顶点为,离心率为.
    (1)求椭圆的方程;
    (2)设过椭圆右焦点的直线交椭圆于两点,过原点的直线交椭圆于两点.若,求证:为定值.
    例44.(2022·全国·高三专题练习)在平面直角坐标系xOy中,已知点,,点M满足.记M的轨迹为C.
    (1)求C的方程;
    (2)设点P为x轴上的动点,经过且不垂直于坐标轴的直线l与C交于A,B两点,且,证明:为定值.
    相关试卷

    重难点突破06 弦长问题及长度和、差、商、积问题(七大题型)-2024年高考数学一轮复习(新教材新高考): 这是一份重难点突破06 弦长问题及长度和、差、商、积问题(七大题型)-2024年高考数学一轮复习(新教材新高考),文件包含重难点突破06弦长问题及长度和差商积问题七大题型原卷版docx、重难点突破06弦长问题及长度和差商积问题七大题型解析版docx等2份试卷配套教学资源,其中试卷共111页, 欢迎下载使用。

    新高考数学二轮复习圆锥曲线专题突破提升练习第16讲 弦长问题及长度和、差、商、积问题(2份打包,原卷版+解析版): 这是一份新高考数学二轮复习圆锥曲线专题突破提升练习第16讲 弦长问题及长度和、差、商、积问题(2份打包,原卷版+解析版),文件包含新高考数学二轮复习圆锥曲线专题突破提升练习第16讲弦长问题及长度和差商积问题原卷版doc、新高考数学二轮复习圆锥曲线专题突破提升练习第16讲弦长问题及长度和差商积问题解析版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    专题29 弦长问题及长度和、差、商、积问题-新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用): 这是一份专题29 弦长问题及长度和、差、商、积问题-新高考数学大一轮复习讲义之方法技巧与题型全归纳(新高考专用),文件包含专题29弦长问题及长度和差商积问题解析版docx、专题29弦长问题及长度和差商积问题原卷版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        最新高考数学二轮复习讲义重难点突破篇 专题29 弦长问题及长度和、差、商、积问题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map