终身会员
搜索
    上传资料 赚现金
    北师大版2024-2025学年六年级数学上册典型例题系列第一单元圆扇形篇【八大考点】(原卷版+解析)
    立即下载
    加入资料篮
    北师大版2024-2025学年六年级数学上册典型例题系列第一单元圆扇形篇【八大考点】(原卷版+解析)01
    北师大版2024-2025学年六年级数学上册典型例题系列第一单元圆扇形篇【八大考点】(原卷版+解析)02
    北师大版2024-2025学年六年级数学上册典型例题系列第一单元圆扇形篇【八大考点】(原卷版+解析)03
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版2024-2025学年六年级数学上册典型例题系列第一单元圆扇形篇【八大考点】(原卷版+解析)

    展开
    这是一份北师大版2024-2025学年六年级数学上册典型例题系列第一单元圆扇形篇【八大考点】(原卷版+解析),共35页。

    篇首寄语我们每位老师都希望把最好的教学资料留给学生,但面对琳琅满目的资料时,总是费时费力才能找到自己心仪的那份,编者也常常为此苦恼。于是,编者就常想,如果是自己来创作一份资料又该怎样?再结合自身教学经验和学生实际情况后,最终创作出了一个既适宜课堂教学讲解,又适宜课后作业练习,还适宜阶段复习的大综合系列。《2024-2025学年六年级数学上册典型例题系列》是基于教材知识点和常年考点真题总结与编辑而成的,该系列主要分为典型例题篇、专项练习篇、单元复习篇、分层试卷篇等四个部分。1.典型例题篇,按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。2.专项练习篇,从高频考题和期末真题中选取专项练习,其优点在于选题经典,题型多样,题量适中。3.单元复习篇,汇集系列精华,高效助力单元复习,其优点在于综合全面,精炼高效,实用性强。4.分层试卷篇,根据试题难度和不同水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。黄金无足色,白璧有微瑕,如果您在使用资料的过程中有任何宝贵意见,请留言于我改进,欢迎您的使用,谢谢!2023年9月20日2024-2025学年六年级数学上册典型例题系列第一单元圆·扇形篇【八大考点】专题解读本专题是第一单元圆·扇形篇。本部分内容主要包括扇形的认识、扇形的弧长、周长、面积等,部分考点综合性较强,建议作为本章重点内容进行讲解,一共划分为八个考点,欢迎使用。目录导航目录TOC \o "1-1" \h \u  HYPERLINK \l "_Toc11098" 【考点一】扇形的认识  PAGEREF _Toc11098 \h 3 HYPERLINK \l "_Toc251" 【考点二】扇形的弧长和周长  PAGEREF _Toc251 \h 5 HYPERLINK \l "_Toc11669" 【考点三】扇形的面积  PAGEREF _Toc11669 \h 7 HYPERLINK \l "_Toc7940" 【考点四】扇环的面积  PAGEREF _Toc7940 \h 9 HYPERLINK \l "_Toc9715" 【考点五】绘制扇形图  PAGEREF _Toc9715 \h 11 HYPERLINK \l "_Toc31903" 【考点六】扇形面积的实际应用  PAGEREF _Toc31903 \h 14 HYPERLINK \l "_Toc32420" 【考点七】拼接法求扇形的面积  PAGEREF _Toc32420 \h 17 HYPERLINK \l "_Toc19751" 【考点八】与扇形有关的不规则图形和阴影部分图形的面积  PAGEREF _Toc19751 \h 20典型例题【考点一】扇形的认识。【方法点拨】1.圆上A、B两点之间的部分叫做弧,读作“弧AB”,一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形,顶点在圆心的角叫做圆心角。2.同一个圆中,扇形的大小与这个扇形的圆心角有关,同一个圆中,扇形的圆心角越大,扇形越大。3.同一个圆中,扇形圆心角与圆周角的比值等于扇形面积与圆面积的比值。【典型例题1】认识扇形。如图,圆周上A、B两点之间的部分叫做(     ),由半径OA、OB和孤AB围成的涂色部分是(     ),这一部分面积是圆面积的。【对应练习】如下图,圆上A、B两点之间的部分叫做( ),读作( ),图中涂色的部分叫做( )形。【典型例题2】认识圆心角。下面图形中哪些角是圆心角?在(    )里画“√”。【对应练习】下列各圆中,阴影部分是不是扇形?是的在括号里画“√”。【对应练习2】在同一个圆中,扇形的大小与( )有关,以圆为弧的扇形圆心角是( )度。【对应练习3】一个扇形的圆心角是80°,扇形的面积占它所在圆的面积的( )。【考点二】扇形的弧长和周长。【方法点拨】1.扇形弧长:扇形弧长=(其中n表示圆心角的度数)。2.扇形周长:扇形周长=扇形弧长+两条半径的长。【典型例题1】弧长。下图是直径6cm的圆。其中阴影扇形的半径是( )厘米,圆心角是( )度,弧AB长( ) cm。【典型例题2】周长。已知一个扇形的半径为6厘米,圆心角为120°,那么这个扇形的弧长为( )厘米,周长是( )厘米,【对应练习1】在一个半径是2厘米的圆内画一个圆心角是90°的扇形,这个扇形的周长是( )厘米。【对应练习2】如图中圆的半径是4cm,那么阴影部分的周长是( )cm。【考点三】扇形的面积。【方法点拨】在计算扇形面积时要还是看扇形的圆心角,圆心角占周角的几分之几,扇形面积就占这个圆面积的几分之几。扇形面积=(其中n表示圆心角的度数)【典型例题】圆心角为45度,半径是8厘米的扇形,它的面积是( )。【对应练习1】一个圆的半径是3cm,把它平均分成3个扇形,每个扇形的圆心角是( )°,每个扇形的面积是( )cm2。【对应练习2】一个周长为7.14厘米,圆心角是90°的扇形的面积是( )平方厘米。【对应练习3】如图中,已知扇形的半径是3厘米,扇形的面积是( )平方厘米。【考点四】扇环的面积。【方法点拨】1.扇环:扇环是一个圆环被扇形截得的一部分2.扇环面积=大扇形的面积-小扇形的面积。【典型例题】如图,一把折扇的骨架长是30厘米,扇面宽为20厘米,完全展开时圆心角为135°,扇面的面积为( )平方厘米。【对应练习1】下图是一幅扇面画的示意图,请根据图中的信息,求它的面积。【对应练习2】你能求出下面阴影部分的面积吗?(单位:dm)【对应练习3】求阴影部分的面积。(单位:厘米)【考点五】绘制扇形图。【方法点拨】画扇形图同画圆方法类似,注意使用量角器度量圆心角。【典型例题】先画一个半径1厘米的圆,再在圆中画一个圆心角是的扇形。并求出这个扇形的面积。取【对应练习1】(1)在下面的正方形内画一个最大的圆。(2)在圆中画一个圆心角是120°的扇形,求出扇形的面积。【对应练习2】按要求作图。(1)画一个半径是2厘米的圆,并求出它的面积。(2)在这个圆中画一个圆心角是60°的扇形。【对应练习3】(1)画出一个半径是2厘米的圆。(2)在所画圆中画一个圆心角是100°的扇形。(3)尝试计算出扇形的面积。【考点六】扇形面积的实际应用。【方法点拨】解答扇形相关的实际问题,关键在于熟练掌握并正确计算扇形的面积。【典型例题】如下图,利用两面墙作边,用栅栏围成一个扇形羊圈。已知羊圈的直径是10米,则围成的羊圈面积是多少平方米?至少需要多少米长的栅栏?【对应练习1】一只挂钟的分针长20厘米,经过45分钟后,这根分针扫过的面积是多少平方厘米?【对应练习2】在一次练习中,铅球投掷的落点区域是一个圆(如图)某小学生运动员最远投掷距离为6米,铅球可能的落点区域面积是多少平方米?【对应练习3】张大爷准备靠墙用栅栏围成一个养鸡舍(如图),半径是5米。(1)围成这个养鸡舍,至少要用多长的栅栏?(2)如果要扩建这个养鸡舍,把它的直径增加2米,这个养鸡舍的面积增加了多少?【考点七】拼接法求扇形的面积。【方法点拨】1.扇形的拼接:一个扇形可以分割成若干个半径相等的小扇形,反之若干个半径相等的小扇形也可以拼成一个大扇形,并且这些小扇形的圆心角之和正好等于大扇形的圆心角。2.思路:计算与多边形内角和结合的扇形面积时,将若干个半径相等的小扇形拼成一个大扇形,大扇形的圆心角等于各小扇形的圆心角之和,然后根据圆心角与周角的倍数关系计算出大扇形的面积,也就计算出了多个小扇形总共的面积。【典型例题1】如图两个圆的半径都是4厘米,涂色部分的面积之和是( )平方厘米。 【典型例题2】图形探索:根据情境完成填空。情境描述:一天,六(1)班的牛牛同学在作业本上画了一个任意的四边形,接着他又分别以四边形的四个顶点为圆心画了4个半径是3cm的扇形,再给这4个扇形涂上阴影,如图,画完后,他好奇地发现一个数学问题:阴影部分的面积是多少呢?经过他深入探索,他突然兴奋地嚷道:“太简单了!用四年级学过的多边形的内角和知识不就解决了吗。”如果我来解决,按照牛牛同学的思路,这4个扇形剪下来正好可以拼成一个( ),因为( ),所以阴影部分的面积( )cm2。【对应练习1】图中阴影部分的面积之和是( )cm2。【对应练习2】三个半径2cm的圆的圆心正好在三角形的三个顶点上,你能算出涂色部分的面积吗?(提示:三角形的内角和是180°)【对应练习3】如图,四个圆的直径都是10cm,阴影部分的面积是( )cm2。(π≈3)【考点八】与扇形有关的不规则图形和阴影部分图形的面积。【方法点拨】解决与扇形有关的不规则图形或阴影部分面积,关键在于熟练掌握常见平面图形的面积公式,本考点具体部分请参考《圆总集篇》。【典型例题】求下图中阴影部分的面积。(单位:厘米)【对应练习1】如下图,在直角梯形ABCO中,OA是圆的半径,,,求阴影部分的面积。(单位:厘米,取3.14)【对应练习2】如图,四边形ABCD是周长为80厘米的正方形,在以C为圆心、CD为半径的扇形中,∠DCE=90°。求阴影部分的面积。(圆周率取3.14)【对应练习3】已知扇形的周长是26.84厘米,O是扇形的圆心,阴影部分的面积是多少平方厘米? 篇首寄语我们每位老师都希望把最好的教学资料留给学生,但面对琳琅满目的资料时,总是费时费力才能找到自己心仪的那份,编者也常常为此苦恼。于是,编者就常想,如果是自己来创作一份资料又该怎样?再结合自身教学经验和学生实际情况后,最终创作出了一个既适宜课堂教学讲解,又适宜课后作业练习,还适宜阶段复习的大综合系列。《2024-2025学年六年级数学上册典型例题系列》是基于教材知识点和常年考点真题总结与编辑而成的,该系列主要分为典型例题篇、专项练习篇、单元复习篇、分层试卷篇等四个部分。1.典型例题篇,按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。2.专项练习篇,从高频考题和期末真题中选取专项练习,其优点在于选题经典,题型多样,题量适中。3.单元复习篇,汇集系列精华,高效助力单元复习,其优点在于综合全面,精炼高效,实用性强。4.分层试卷篇,根据试题难度和不同水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。黄金无足色,白璧有微瑕,如果您在使用资料的过程中有任何宝贵意见,请留言于我改进,欢迎您的使用,谢谢!2023年9月20日2024-2025学年六年级数学上册典型例题系列第一单元圆·扇形篇【八大考点】专题解读本专题是第一单元圆·扇形篇。本部分内容主要包括扇形的认识、扇形的弧长、周长、面积等,部分考点综合性较强,建议作为本章重点内容进行讲解,一共划分为八个考点,欢迎使用。目录导航目录TOC \o "1-1" \h \u  HYPERLINK \l "_Toc11098" 【考点一】扇形的认识  PAGEREF _Toc11098 \h 3 HYPERLINK \l "_Toc251" 【考点二】扇形的弧长和周长  PAGEREF _Toc251 \h 5 HYPERLINK \l "_Toc11669" 【考点三】扇形的面积  PAGEREF _Toc11669 \h 7 HYPERLINK \l "_Toc7940" 【考点四】扇环的面积  PAGEREF _Toc7940 \h 9 HYPERLINK \l "_Toc9715" 【考点五】绘制扇形图  PAGEREF _Toc9715 \h 11 HYPERLINK \l "_Toc31903" 【考点六】扇形面积的实际应用  PAGEREF _Toc31903 \h 14 HYPERLINK \l "_Toc32420" 【考点七】拼接法求扇形的面积  PAGEREF _Toc32420 \h 17 HYPERLINK \l "_Toc19751" 【考点八】与扇形有关的不规则图形和阴影部分图形的面积  PAGEREF _Toc19751 \h 20典型例题【考点一】扇形的认识。【方法点拨】1.圆上A、B两点之间的部分叫做弧,读作“弧AB”,一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形,顶点在圆心的角叫做圆心角。2.同一个圆中,扇形的大小与这个扇形的圆心角有关,同一个圆中,扇形的圆心角越大,扇形越大。3.同一个圆中,扇形圆心角与圆周角的比值等于扇形面积与圆面积的比值。【典型例题1】认识扇形。如图,圆周上A、B两点之间的部分叫做(     ),由半径OA、OB和孤AB围成的涂色部分是(     ),这一部分面积是圆面积的。解析:弧;扇形;【对应练习】如下图,圆上A、B两点之间的部分叫做( ),读作( ),图中涂色的部分叫做( )形。解析:弧;弧AB;扇【典型例题2】认识圆心角。下面图形中哪些角是圆心角?在(    )里画“√”。解析:根据圆心角的定义判断如下:【对应练习】下列各圆中,阴影部分是不是扇形?是的在括号里画“√”。解析:由分析可知:【对应练习2】在同一个圆中,扇形的大小与( )有关,以圆为弧的扇形圆心角是( )度。解析:圆心角的大小;60【对应练习3】一个扇形的圆心角是80°,扇形的面积占它所在圆的面积的( )。解析:【考点二】扇形的弧长和周长。【方法点拨】1.扇形弧长:扇形弧长=(其中n表示圆心角的度数)。2.扇形周长:扇形周长=扇形弧长+两条半径的长。【典型例题1】弧长。下图是直径6cm的圆。其中阴影扇形的半径是( )厘米,圆心角是( )度,弧AB长( ) cm。解析:直径6cm的圆。其中阴影扇形的半径是3厘米,圆心角是360÷4=90°,弧AB长:3.14×6×=18.84×=4.71(厘米)【典型例题2】周长。已知一个扇形的半径为6厘米,圆心角为120°,那么这个扇形的弧长为( )厘米,周长是( )厘米,解析:弧长:=12.56(厘米)周长:12.56+2×6=12.56+12=24.56(厘米)【对应练习1】在一个半径是2厘米的圆内画一个圆心角是90°的扇形,这个扇形的周长是( )厘米。解析:90°÷360°=这个扇形的周长:2×3.14×2×+2×2=6.28×2×+4=12.56×+4=7.14(厘米)【对应练习2】如图中圆的半径是4cm,那么阴影部分的周长是( )cm。解析:3.14×4×2÷4+4×2=6.28+8=14.28(cm)【考点三】扇形的面积。【方法点拨】在计算扇形面积时要还是看扇形的圆心角,圆心角占周角的几分之几,扇形面积就占这个圆面积的几分之几。扇形面积=(其中n表示圆心角的度数)【典型例题】圆心角为45度,半径是8厘米的扇形,它的面积是( )。【答案】25.12平方厘米【分析】根据扇形面积=πr²×,计算即可。【详解】3.14×8²× =200.96×=25.12(平方厘米)【点睛】关键是掌握扇形面积公式。【对应练习1】一个圆的半径是3cm,把它平均分成3个扇形,每个扇形的圆心角是( )°,每个扇形的面积是( )cm2。【答案】 120 9.42【分析】根据题意,把一个圆平均分成3个扇形,即把整个圆的圆心角360°平均分成3份,每个扇形的圆心角是360°÷3=120°;根据圆的面积公式S=πr2,求出一个圆的面积,再除以3,即是每个扇形的面积。【详解】360°÷3=120°3.14×32÷3=3.14×9÷3=28.26÷3=9.42(cm2)每个扇形的圆心角是120°,每个扇形的面积是9.42cm2。【点睛】本题考查扇形圆心角的认识以及扇形面积的求法。【对应练习2】一个周长为7.14厘米,圆心角是90°的扇形的面积是( )平方厘米。【答案】3.14【分析】圆心角是90°的扇形的周长=r+r+2r×,据此列方程求出圆的半径;再根据圆的面积公式()求出圆的面积;圆心角是90°的扇形的面积是圆面积的,据此求出扇形的面积。【详解】解:设扇形的半径为r厘米,则扇形的弧长是2πr×厘米。r+r+2πr×=7.14(1+1+1.57)r=7.143.57r=7.143.57r÷3.57=7.14÷3.57r=23.14×22×=3.14×4×=3.14×1=3.14(平方厘米)所以圆心角是90°的扇形的面积是3.14平方厘米。【点睛】扇形是由一条弧和经过这条弧两端的两条半径所围成的图形。明确扇形的周长是解决此题的关键。【对应练习3】如图中,已知扇形的半径是3厘米,扇形的面积是( )平方厘米。【答案】9.42【分析】根据扇形的面积=×πr2,由此代入数据即可解决问题。【详解】×3.14×32=×28.26=9.42(平方厘米)则扇形的面积是9.42平方厘米。【点睛】此题考查了扇形的面积公式的计算应用。【考点四】扇环的面积。【方法点拨】1.扇环:扇环是一个圆环被扇形截得的一部分2.扇环面积=大扇形的面积-小扇形的面积。【典型例题】如图,一把折扇的骨架长是30厘米,扇面宽为20厘米,完全展开时圆心角为135°,扇面的面积为( )平方厘米。解析:观察图形可知,扇面的面积等于圆心角是135°、半径30厘米的扇形的面积与圆心角是135°,半径30-20=10厘米的扇形的面积之差,据此利用扇形的面积= ,代入数据计算即可解答问题。30-20=10(厘米)-=-=1059.75-117.75=942(平方厘米)【对应练习1】下图是一幅扇面画的示意图,请根据图中的信息,求它的面积。解析:3.14×[(18+12)2-122]×=3.14×[302-122]×=3.14×756×=2373.84×=593.46(cm2)【对应练习2】你能求出下面阴影部分的面积吗?(单位:dm)解析:3.14×[52-(5-2)2]×=3.14×16×=3.14×4=12.56(平方分米)【对应练习3】求阴影部分的面积。(单位:厘米)解析:====28.26(平方厘米)答:阴影部分的面积是28.26平方厘米。【考点五】绘制扇形图。【方法点拨】画扇形图同画圆方法类似,注意使用量角器度量圆心角。【典型例题】先画一个半径1厘米的圆,再在圆中画一个圆心角是的扇形。并求出这个扇形的面积。取【答案】0.785平方厘米【分析】圆心确定圆的位置,半径确定圆的大小,由此以点O为圆心,以1厘米为半径,即可画出这个圆,因为圆周角为360°,所以用以圆的任意一条半径为扇形的边,再利用量角器画出圆心角为90°的扇形,根据扇形面积公式:S=πr2×,把数据代入公式求出这个扇形的面积。【详解】作图如下:(平方厘米)答:这个扇形的面积是平方厘米。【点睛】此题考查的目的是理解掌握圆的画法、扇形面积公式的灵活运用,关键是熟记公式。【对应练习1】(1)在下面的正方形内画一个最大的圆。(2)在圆中画一个圆心角是120°的扇形,求出扇形的面积。【答案】(1)图见详解(2)2.355平方厘米【分析】(1)以正方形的两条对角线的交点为圆心,以正方形的边长3厘米为直径画圆;(2)画出圆心角是120°的扇形,然后求面积即可。【详解】(1)作图如下:(2)3.14×(3÷2)2×=3.14×1.52×=3.14×2.25×=7.065×=2.355(平方厘米)答:扇形面积2.355平方厘米。【点睛】本题主要考查了正方形及正方形里面的最大的圆的作法,以及扇形面积计算知识,结合题意分析解答即可。【对应练习2】按要求作图。(1)画一个半径是2厘米的圆,并求出它的面积。(2)在这个圆中画一个圆心角是60°的扇形。【答案】(1)见详解;12.56平方厘米(2)见详解【分析】(1)根据圆心确定圆的位置,半径确定圆的大小;以点O为圆心,以2厘米为半径,即可画出这个圆;然后根据圆的面积公式S=πr2,代入数据计算求出这个圆的面积。(2)以O点为顶点,用圆的任意一条半径为边,利用量角器画出60°角,两条半径和60°圆心角所对的弧围成的封闭图形即为扇形。【详解】(1)画一个半径是2厘米的圆,如下图。3.14×22=3.14×4=12.56(平方厘米)答:它的面积是12.56平方厘米。(2)画一个圆心角是60°的扇形,如下图。(以实际测量为准)【点睛】本题考查圆、扇形的作图方法以及圆的面积公式的运用。【对应练习3】(1)画出一个半径是2厘米的圆。(2)在所画圆中画一个圆心角是100°的扇形。(3)尝试计算出扇形的面积。【答案】(1)(2)见详解;(3)平方厘米【分析】(1)如图所示,以点O为圆心,圆规两脚之间的距离为2厘米画圆,画出半径OA,并标注圆心和半径;(2)如图所示,以O为顶点,OA为边用量角器画出∠AOB=100°,并标出圆心角;(3)整个圆的圆心角是360°,求出扇形的圆心角占360°的分率,再乘圆的面积求出扇形的面积,据此解答。【详解】(1)(2)作图如下:(3)3.14×22×=12.56×=×=(平方厘米)答:扇形的面积是平方厘米。【点睛】掌握圆和扇形的画法以及圆的面积计算公式是解答题目的关键。【考点六】扇形面积的实际应用。【方法点拨】解答扇形相关的实际问题,关键在于熟练掌握并正确计算扇形的面积。【典型例题】如下图,利用两面墙作边,用栅栏围成一个扇形羊圈。已知羊圈的直径是10米,则围成的羊圈面积是多少平方米?至少需要多少米长的栅栏?【答案】58.875平方米;23.55米【分析】由图可知,羊圈的面积占整个圆面积的,需要栅栏的长度占整个圆周长的,利用“”“”分别求出羊圈的面积和需要栅栏的长度,据此解答。【详解】3.14×(10÷2)2×=3.14×25×=78.5×0.75=58.875(平方米)3.14×10×=31.4×0.75=23.55(米)答:围成的羊圈面积是58.875平方米,至少需要23.55米长的栅栏。【点睛】本题主要考查圆的周长和面积公式的应用,熟记公式是解答题目的关键。【对应练习1】一只挂钟的分针长20厘米,经过45分钟后,这根分针扫过的面积是多少平方厘米?【答案】942平方厘米【分析】先根据圆的面积公式()求出圆的面积,即分针走1圈扫过的面积;因为1时=60分,所以经过45分钟分针扫过圆面积的=;用圆的面积乘求出这根分针扫过的扇形面积。【详解】45÷60==3.14××=3.14×400×=1256×=942(平方厘米)答:这根分针扫过的面积是942平方厘米。【点睛】明确分针扫过的扇形面积占整个圆面积的几分之几是解决此题的关键。【对应练习2】在一次练习中,铅球投掷的落点区域是一个圆(如图)某小学生运动员最远投掷距离为6米,铅球可能的落点区域面积是多少平方米?【答案】12.56平方米【分析】由题意可得,圆的半径是6米,根据圆的面积公式:S=求出圆的面积,然后将圆的面积乘即可求出铅球可能的落点区域面积。【详解】3.14×62×=3.14×36×=113.04×=12.56(平方米)答:铅球可能的落点区域面积是12.56平方米。【点睛】本题考查的是圆的面积公式,明确题目中6米是半径还是直径是解题的关键。【对应练习3】张大爷准备靠墙用栅栏围成一个养鸡舍(如图),半径是5米。(1)围成这个养鸡舍,至少要用多长的栅栏?(2)如果要扩建这个养鸡舍,把它的直径增加2米,这个养鸡舍的面积增加了多少?【答案】(1)15.7米;(2)17.27平方米【分析】(1)观察图形可知,栅栏的长度相当于一个半径是5米的圆周长的一半,根据圆的周长公式,用2×3.14×5÷2即可求出栅栏的长度;(2)直径增加2米,则半径变为(5+2÷2)米,根据半圆面积S=πr2÷2,分别求出增加后的面积和增加前的面积,然后求出它们的差即可。【详解】(1)2×3.14×5÷2=3.14×5=15.7(米)答:至少需要15.7米长的栅栏。(2)2÷2=1(米)5+1=6(米)3.14×62÷2=3.14×36÷2=56.52(平方米)3.14×52÷2=3.14×25÷2=39.25(平方米)56.52-39.25=17.27(平方米)答:这个养鸡舍的面积增加了17.27平方米。【点睛】本题考查了圆周长公式和圆面积公式的灵活应用。【考点七】拼接法求扇形的面积。【方法点拨】1.扇形的拼接:一个扇形可以分割成若干个半径相等的小扇形,反之若干个半径相等的小扇形也可以拼成一个大扇形,并且这些小扇形的圆心角之和正好等于大扇形的圆心角。2.思路:计算与多边形内角和结合的扇形面积时,将若干个半径相等的小扇形拼成一个大扇形,大扇形的圆心角等于各小扇形的圆心角之和,然后根据圆心角与周角的倍数关系计算出大扇形的面积,也就计算出了多个小扇形总共的面积。【典型例题1】如图两个圆的半径都是4厘米,涂色部分的面积之和是( )平方厘米。 解析:从图中看出,涂色部分的角的度数和是90°,所以涂色部分的面积之和=πr2×涂色部分占整个圆的几分之几,其中,涂色部分占整个圆的几分之几=涂色部分的角的度数和÷360°。3.14×42×=12.56平方厘米,所以涂色部分的面积之和是12.56平方厘米。【典型例题2】图形探索:根据情境完成填空。情境描述:一天,六(1)班的牛牛同学在作业本上画了一个任意的四边形,接着他又分别以四边形的四个顶点为圆心画了4个半径是3cm的扇形,再给这4个扇形涂上阴影,如图,画完后,他好奇地发现一个数学问题:阴影部分的面积是多少呢?经过他深入探索,他突然兴奋地嚷道:“太简单了!用四年级学过的多边形的内角和知识不就解决了吗。”如果我来解决,按照牛牛同学的思路,这4个扇形剪下来正好可以拼成一个( ),因为( ),所以阴影部分的面积( )cm2。解析:圆;四边形的内角和是360°;28.26【对应练习1】图中阴影部分的面积之和是( )cm2。解析:3.14×22÷2=3.14×4÷2=12.56÷2=6.28(cm2)【对应练习2】三个半径2cm的圆的圆心正好在三角形的三个顶点上,你能算出涂色部分的面积吗?(提示:三角形的内角和是180°)解析:3.14×22×3-3.14×22÷2=37.68-6.28=31.4(cm2)答:涂色部分的面积是31.4 cm2。【对应练习3】如图,四个圆的直径都是10cm,阴影部分的面积是( )cm2。(π≈3)解析:3×(10÷2)2=3×25=75(cm2)【考点八】与扇形有关的不规则图形和阴影部分图形的面积。【方法点拨】解决与扇形有关的不规则图形或阴影部分面积,关键在于熟练掌握常见平面图形的面积公式,本考点具体部分请参考《圆总集篇》。【典型例题】求下图中阴影部分的面积。(单位:厘米)解析:阴影部分面积为:(平方厘米)答:阴影部分的面积为19.44平方厘米。【对应练习1】如下图,在直角梯形ABCO中,OA是圆的半径,,,求阴影部分的面积。(单位:厘米,取3.14)解析:(4+8)×4÷2-3.14×42×=12×2-3.14×16×=24-12.56=11.44(平方厘米)答:阴影部分的面积是11.44平方厘米。【对应练习2】如图,四边形ABCD是周长为80厘米的正方形,在以C为圆心、CD为半径的扇形中,∠DCE=90°。求阴影部分的面积。(圆周率取3.14)解析:80÷4=20(厘米)20×20×=200(平方厘米)3.14×20×20×=314(平方厘米)200+314=514(平方厘米)答:阴影部分的面积是514平方厘米。【对应练习3】已知扇形的周长是26.84厘米,O是扇形的圆心,阴影部分的面积是多少平方厘米?解析:解:设半径是r;阴影部分的面积是下图的;(厘米)(平方厘米)答:阴影部分的面积是10.32平方厘米。
    数学口算宝
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        北师大版2024-2025学年六年级数学上册典型例题系列第一单元圆扇形篇【八大考点】(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map