所属成套资源:新教材2023版高中数学新人教A版选择性必修第二册课件(22份)
- 新教材2023版高中数学第五章一元函数的导数及其应用5.2导数的运算5.2.3简单复合函数的导数课件新人教A版选择性必修第二册 课件 0 次下载
- 新教材2023版高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.1函数的单调性课件新人教A版选择性必修第二册 课件 0 次下载
- 新教材2023版高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第二课时函数的最大小值课件新人教A版选择性必修第二册 课件 0 次下载
- 新教材2023版高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第三课时函数极值与最值的综合应用课件新人教A版选择性必修第二册 课件 0 次下载
- 新教材2023版高中数学第五章一元函数的导数及其应用专项培优章末复习课课件新人教A版选择性必修第二册 课件 0 次下载
人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用教案配套课件ppt
展开
这是一份人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用教案配套课件ppt,共32页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,f′x0,极大值,极小值,答案A,答案AB,答案C,答案B等内容,欢迎下载使用。
【课标解读】1.了解极大值、极小值的概念.2.了解函数在某点取得极值的必要条件和充分条件.3.会用导数求函数的极大值、极小值.
【教 材 要 点】要点一 函数极值❶的定义1.极小值点与极小值若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=______,而且在点x=a附近的左侧________,右侧_______,就把______叫做函数y=f(x)的极小值点,_______叫做函数y=f(x)的极小值.2.极大值点与极大值若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=_______,而且在点x=b附近的左侧_______,右侧_______,就把______叫做函数y=f(x)的极大值点,_______叫做函数y=f(x)的极大值.3.极大值点、极小值点统称为极值点❷;极大值、极小值统称为________.
批注❶ (1)极值是一个局部概念,极值只是某个点的函数值,与它附近点的函数值比较它是最大值或最小值,但并不意味着它在函数的整个定义域内是最大值或最小值.(2)一个函数在某区间上或定义域内的极大值或极小值可以不止一个.(3)函数的极大值与极小值之间无确定的大小关系.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.(5)单调函数一定没有极值. 批注❷ 可导函数的极值点是导数为零的点,但是导数为零的点不一定是极值点,即“点x0是可导函数f(x)的极值点”是“f′(x0)=0”的充分不必要条件.
要点二 求函数y=f(x)极值的方法一般地,求函数y=f(x)的极值的方法是:解方程f′(x)=0,当f′(x0)=0时:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是________;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是________.
【夯 实 双 基】1.判断正误(正确的画“√”,错误的画“×”)(1)函数的极大值一定大于其极小值.( )(2)导数为0的点一定是极值点.( )(3)函数y=f(x)一定有极大值和极小值.( )(4)函数的极值点是自变量的值,极值是函数值.( )
2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( )A.1个 B.2个C.3个 D.4个
解析:由导函数f′(x)在区间(a,b)内的图象可知,函数f′(x)在(a,b)内的图象与x轴有四个公共点,在从左到右第一个点处导数左正右负,在从左到右第二个点处导数左负右正,在从左到右第三个点处导数左正右正,在从左到右第四个点处导数左正右负,所以函数f(x)在开区间(a,b)内的极小值点有1个.故选A.
4.已知函数 f (x) = x3-3x2+2 ,则函数 f (x) 的极大值为________.
解析:∵f(x)=x3-3x2+2,∴f′(x)=3x2-6x,令f′(x)=0,解得:x1=0,x2=6.所以当x=0时,函数f(x)取得极大值,即函数f(x)的极大值为f(0)=2.
题型1 极值的图象特征例1 (多选)[2022·河北邢台·高二期末]若函数f(x)的导函数的部分图象如图所示,则( )A.x1是f(x)的一个极大值点B.x2是f(x)的一个极小值点C.x3是f(x)的一个极大值点D.x4是f(x)的一个极小值点
解析:对于A选项,由图可知,在x1左右两侧,函数f(x)左增右减,x1是f(x)的一个极大值点,A正确.对于B选项,由图可知,在x2左右两侧,函数f(x)左减右增,x2是f(x)的一个极小值点,B正确.对于C选项,由图可知,在x3左右两侧,函数f(x)单调递增,x3不是f(x)的一个极值点,C错误.对于D选项,由图可知,在x4左右两侧,函数f(x)左增右减,x4是f(x)的一个极大值点,D错误.故选AB.
【方法总结】根据导函数图象判断极值点、极值的方法严格按照极值点、极值的定义,观察图象与x轴的交点,若在交点的左侧f′(x)>0,右侧f′(x)<0,则交点是极大值点,函数值是极大值;若在交点的左侧f′(x)<0,右侧f′(x)>0,则交点是极小值点,函数值是极小值;若不符合以上两点就不是极值点,也就没有极值.
巩固训练1 [2022·山东济宁高二期中]如图是函数y=f(x)(x∈R)的导函数f′(x)的图象,下列说法正确的是( )A.x=2是函数y=f(x)的极大值点B.x=-2是函数y=f(x)的零点C.函数y=f(x)在区间(-2,-1)上单调递减D.函数y=f(x)在区间[-2,2]上存在极小值
解析:由f′(x)的图象可知,当x=-1,x=2时,f′(x)=0,又因为当x∈(-∞,2)时,f′(x)>0,当x∈[2,+∞)时,f′(x)≤0,所以f(x)在(-∞,2)上单调递增,在[2,+∞)上单调递减.对于A,f(x)在x=2处取得极大值,无极小值,故A正确;对于B,由f′(x)图象无法判断零点的个数,x=-2不一定是零点,故B错误;对于C,函数y=f(x)在(-2,-1)上单调递增,故C错误;对于D,函数f(x)在x=2处取得极大值,无极小值,故函数f(x)在[-2,2]上无极小值,故D错误.故选A.
解析:(1)函数f(x)=x3-3x2-9x+5的定义域为R,且f′(x)=3x2-6x-9.解方程3x2-6x-9=0,得x1=-1,x2=3.当x变化时,f′(x),f(x)的变化情况如下表:因此,x=-1是函数的极大值点,极大值为f(-1)=10;x=3是函数的极小值点,极小值为f(3)=-22.
【方法总结】求可导函数f(x)极值的一般步骤
(2)y′=3x2(x-5)2+2x3(x-5)=5x2(x-3)(x-5).令y′=0,即5x2(x-3)(x-5)=0,解得x1=0,x2=3,x3=5.当x变化时,y′与y的变化情况如下表:∴x=0不是y的极值点;x=3是y的极大值点,y极大值=f (3)=108;x=5是y的极小值点,y极小值=f (5)=0.
题型3 已知函数的极值求参数值或范围例3 (1)已知函数f(x)=x3+ax2+bx+a2在x=1处取极值10,则a=( )A.4或-3 B.4或-11C.4 D.-3
(2)[2022·山东聊城高二期中]设函数f(x)=(ax2+bx+c)ex(a,b,c∈R),若x=-1为函数f(x)的一个极值点,则下列结论一定正确的是( )A.2a+b=0 B.a-c=0C.2a-b=0 D.b≠0
(3)函数f(x)=ax3-2x2+x+c(a>0)在(-∞,+∞)上无极值,求实数a的取值范围.
【方法总结】已知函数极值求参数的方法
巩固训练3 (1)[2022·河北石家庄二中高二期中]若函数y=-x3+3x2+m的极大值等于9,则实数m等于( )A.5 B.9C.-5 D.9
解析:y′=-3x2+6x=-3x(x-2),当0
相关课件
这是一份高中数学5.3 导数在研究函数中的应用授课课件ppt,共26页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,连续不断,最大值,最小值,答案A,答案D等内容,欢迎下载使用。
这是一份数学选择性必修 第二册5.3 导数在研究函数中的应用课文内容ppt课件,共51页。PPT课件主要包含了自学导引,fx3,最大值和最小值,区间端点处,课堂互动,素养训练等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用集体备课ppt课件,共36页。