所属成套资源:适用于新高考新教材2024版高考数学二轮复习课件(85份)
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题2数列课件 课件 0 次下载
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题2数列培优拓展二数列中的情境创新与数学文化课件 课件 0 次下载
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题3立体几何高考小题突破4空间几何体的结构表面积与体积课件 课件 0 次下载
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题3立体几何解答题专项3立体几何中的证明与计算课件 课件 0 次下载
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题3立体几何课件 课件 0 次下载
适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题2数列培优拓展三数列中的奇偶项问题课件
展开
这是一份适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题2数列培优拓展三数列中的奇偶项问题课件,共16页。
解数列中的奇、偶项问题,可以把一个数列分成两个新数列进行单独研究,利用新数列的特征(等差、等比数列或其他特征)求解原数列.数列中奇、偶项问题的常见题型有:(1)数列中连续两项和或积的问题(an+an+1=f(n)或an·an+1=f(n));(2)通项公式中含有(-1)n的类型;(3)含有{a2n},{a2n-1}的类型;(4)已知条件明确的奇、偶项问题.
角度1 通项公式中含有(-1)n的数列求和
(1)求数列{bn}的前n项和Bn,并证明Bn+1,Bn,Bn+2是等差数列;(2)设cn=(-1)nan+bn,求数列{cn}的前n项和Tn.
角度2 奇、偶项通项公式不同的数列求和
例2(2023新高考Ⅱ,18)已知{an}为等差数列, 记Sn,Tn分别为数列{an},{bn}的前n项和,S4=32,T3=16.(1)求{an}的通项公式;(2)证明:当n>5时,Tn>Sn.
增分技巧对于通项公式分奇、偶不同的数列{an}求Sn时,我们可以分别求出奇数项的和与偶数项的和,也可以把a2k-1+a2k看作一项,求出S2k,再求S2k-1 =S2k-a2k.
(1)(2023山东聊城一模)已知数列{an}满足a1+a3=2a2, 数列{cn}满足cn=a2n-1.①求数列{cn}和{an}的通项公式;②求数列{an}的前n项和Sn.
(ⅰ)求数列{an},{bn}的通项公式;(ⅱ)设数列{cn}的通项公式为cn=an+(-1)n(3bn+1),求数列{cn}的前n项和Tn.
相关课件
这是一份适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数培优拓展十四极值点偏移问题课件,共13页。PPT课件主要包含了极值点左偏,极值点右偏等内容,欢迎下载使用。
这是一份适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数培优拓展十三隐零点问题课件,共12页。
这是一份适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题5解析几何培优拓展八隐形圆问题课件,共12页。PPT课件主要包含了ABD等内容,欢迎下载使用。