![13.5.3 角平分线 华东师大版八年级数学上册教案01](http://m.enxinlong.com/img-preview/2/3/14994783/0-1700812458/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![13.5.3 角平分线 华东师大版八年级数学上册教案02](http://m.enxinlong.com/img-preview/2/3/14994783/0-1700812458/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
华师大版3 角平分线教学设计
展开1.会叙述角的平分线的性质及判定;(重点)
2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理.能应用这两个性质解决一些简单的实际问题;(难点)
3.经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力.
教学重难点
重点:会叙述角的平分线的性质及判定.
难点:能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理.能应用这两个性质解决一些简单的实际问题.
教学过程
一、情境导入
问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.
问题1:怎样修建道路最短?
问题2:往哪条路走更近呢?
二、合作探究
探究点一:角平分线的性质定理
【类型一】 利用角平分线的性质求线段的长度
如图,在△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于D,DE⊥AB于E,若AB=7cm,则△DBE的周长是 .
解析:在△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于D,DE⊥AB于E,根据角平分线的性质,可得CD=ED,AC=AE=BC,继而可得△DBE的周长AB.故答案为7cm.
方法总结:此题考查了角平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.从题目提供的信息找出求证的思路是解题的关键,读懂题目信息比较重要.
【类型二】 角平分线的性质定理与三角形面积的综合运用
如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC的长是( )
A.6 B.5 C.4 D.3
解析:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=2,∴S△ABC=eq \f(1,2)×4×2+eq \f(1,2)×AC×2=7,解得AC=3.故选D.
方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.
【类型三】 角平分线的性质定理与全等三角形的综合运用
如图所示,D是△ABC外角∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.
解析:由角平分线上的性质可得DE=DF,再利用“HL”证明Rt△CDE和Rt△CDF全等,根据全等三角形对应边相等证明即可.
证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,∴DE=DF.在Rt△CDE和Rt△CDF中,∵eq \b\lc\{(\a\vs4\al\c1(CD=CD,,DE=DF,))∴Rt△CDE≌Rt△CDF(HL),∴CE=CF.
方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.
探究点二:角平分线的判定定理
【类型一】 角平分线的判定
如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.
INCLUDEPICTURE"JAB66.TIF"
解析:先判定Rt△BDE和Rt△CDF全等,得出DE=DF,再由角平分线的判定可知AD是∠BAC的平分线.
证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD=90,∴△BED与△CFD是直角三角形.在Rt△BED和Rt△CFD中,∵eq \b\lc\{(\a\vs4\al\c1(BE=CF,,BD=CD,))
∴Rt△BED≌Rt△CFD(HL),∴DE=DF.∵DE⊥AB,DF⊥AC,∴AD是∠BAC的平分线.
方法总结:证明一条射线是角平分线的方法有两种:一是利用三角形全等证明两角相等;二是角的内部到角两边距离相等的点在角平分线上.
【类型二】 角平分线的性质和判定的综合
如图,△ABC的∠ABC和∠ACB的外角平分线交于点D.求证:AD是∠BAC的平分线.
解析:分别过点D作DE、DF、DG垂直于AB、BC、AC,垂足分别为E、F、G,然后利用角平分线上的点到角两边的距离相等可知DE=DG,再利用到角两边距离相等的点在角平分线上来证明.
证明:分别过D作DE、DF、DG垂直于AB、BC、AC,垂足分别为E、F、G.∵BD平分∠CBE,DE⊥BE,DF⊥BC,∴DE=DF.同理DG=DF,∴DE=DG,∴点D在∠BAC的平分线上,∴AD是∠BAC的平分线.
方法总结:在遇到角平分线的问题时,往往过角平分线上的一点作角两边的垂线段,利用角平分线的判定或性质解决问题.
【类型三】 线段垂直平分线与角平分线的综合运用
如图,在四边形ADBC中,AB与CD互相垂直平分,垂足为点O.
(1)找出图中相等的线段;
(2)OE,OF分别是点O到∠CAD两边的垂线段,试说明它们的大小有什么关系.
解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可证明△AOC≌△AOD,可得AO平分∠DAC,根据角平分线的性质可得OE=OF.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;
(2)OE=OF,理由如下:在△AOC和△AOD中,∵eq \b\lc\{(\a\vs4\al\c1(AC=AD,,OC=OD,,AO=AO,))∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.
方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.
探究点三:角平分线性质的应用
已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:
INCLUDEPICTURE"JAB71.TIF"
(1)可选择的地点有几处?
(2)你能画出塔台的位置吗?
解析:(1)根据角平分线的性质得出符合条件的点有4处.(2)作出直线l1,l2,l3两两相交组成的角的平分线,角平分线的交点就是所求的点.
解:(1)可选择的地点有4处,如图:P1、P2、P3、P4,共4处;
(2)能,如图,根据角平分线的性质作三条直线相交所成的角的平分线,角平分线的交点就是所求的点.
方法总结:三角形内角平分线的交点到三角形三边的距离相等,反过来,到三角形三边距离相等的点,即为三角形内角平分线的交点;若是到三角形三边所在的直线的距离相等,则这样的点还有外角角平分的交点,故共有4个.这一结论在以后的学习中经常遇到.
三、板书设计
eq \a\vs4\al(角平分线的,性质及判定)eq \b\lc\{(\a\vs4\al\c1(性质定理:角平分线上的点到角的两, 边距离相等.,判定定理:角的内部到角两边距离相, 等的点在角的平分线上.))
教学反思
角平分线是初中数学中重要的概念,它有着十分重要的性质,通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础.教学时用数学语言叙述角平分线的性质定理和判定定理,让学生熟悉这两个定理的条件和结论后,再出一些具体的题目让学生在情境当中运用这两个定理.在证明定理时注重分析思路,学生学会思考问题,注重书写格式,让学生学会清楚的表达思考的过程.在证明的选题上,注意减缓难度,循序渐进.
沪科版八年级上册15.4 角的平分线教学设计: 这是一份沪科版八年级上册15.4 角的平分线教学设计,共3页。教案主要包含了学教过程等内容,欢迎下载使用。
初中华师大版第13章 全等三角形13.5 逆命题与逆定理3 角平分线教案设计: 这是一份初中华师大版第13章 全等三角形13.5 逆命题与逆定理3 角平分线教案设计,共4页。教案主要包含了学习目标,重难点,课前预习,教具准备,学习过程,课堂小结等内容,欢迎下载使用。
华师大版八年级上册3 角平分线教学设计: 这是一份华师大版八年级上册3 角平分线教学设计,共4页。