九年级上册数学第22章 二次函数专题20 二次函数与相似三角形存在性问题
展开
这是一份九年级上册数学第22章 二次函数专题20 二次函数与相似三角形存在性问题,文件包含专题20二次函数与相似三角形存在性问题原卷版docx、专题20二次函数与相似三角形存在性问题解析版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。
专题20 二次函数与相似三角形存在性问题解题点拨【问题描述】在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.【基本定理】判定1:三边对应成比例的两个三角形是相似三角形;判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;判定3:有两组角对应相等的三角形是相似三角形.以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.【题型分析】通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.【思路总结】根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.然后再找:思路1:两相等角的两边对应成比例;思路2:还存在另一组角相等.事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.一、如何得到相等角?二、如何构造两边成比例或者得到第二组角?搞定这两个问题就可以了. 直击中考1.如图,设抛物线与轴交于两个不同的点、,对称轴为直线,顶点记为点.且.(1)求的值和抛物线的解析式;(2)已知过点A的直线交抛物线于另一点.若点在轴上,以点、、为顶点的三角形与相似,求点的坐标;(3)在(2)的条件下,的外接圆半径等于 .(直接写答案)
2.(2022·四川绵阳·统考中考真题)如图,抛物线y=ax2+bx+c交x轴于A(-1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°.若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与ΔADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.
3.(2022·辽宁·统考中考真题)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图①,点P为直线AC下方抛物线上的点,连接PA,PC,△BAF的面积记为S1,△PAC的面积记为S2,当S2=S1时.求点P的横坐标;(3)如图②,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.
4.(2022·广西桂林·统考中考真题)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当CPM和QBN相似时,求点Q的坐标.
5.(2022·广西玉林·统考中考真题)如图,已知抛物线:与x轴交于点A,(A在B的左侧),与y轴交于点C,对称轴是直线,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段的中点,则能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段交于点M,垂足为点H,若以P,M,C为顶点的三角形与相似,求点P的坐标.
6.(2021·黑龙江·统考中考真题)如图,抛物线与x轴交于点和点,与y轴交于点C,连接,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线上,若以点P、Q、E为顶点的三角形与相似,请直接写出点P的坐标.
7.(2023秋·上海浦东新·九年级统考期末)如图,在平面直角坐标系中,抛物线与x轴的正、负半轴分别交于点B、A,与y轴交于点C,已知,,.(1)求该抛物线的表达式;(2)设该抛物线的对称轴分别与x轴、交于点E、F,求的长;(3)在(2)的条件下,联结,如果点P在该抛物线的对称轴上,当和相似时,求点P的坐标
8.如图,直线分别交轴、轴于、两点,绕点按逆时针方向旋转后得到,抛物线经过、、三点.(1)填空:, 、 , 、 , ;(2)求抛物线的函数关系式;(3)为抛物线的顶点,在线段上是否存在点,使得以、、为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.
9.(2022春·全国·九年级专题练习)已知:如图,,,点的坐标为,抛物线过、、三点.(1)求抛物线的解析式;(2)过点作交抛物线于点,求四边形的面积;(3)在轴上方轴左侧的抛物线上是否存在一点,过作轴于点,使以、、三点为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.
10.(2022春·全国·九年级专题练习)如图,一次函数的图象与二次函数图象的对称轴交于点.(1)写出点的坐标 ;(2)将直线沿轴向上平移,分别交轴于点、交轴于点,点是该抛物线与该动直线的一个公共点,试求当的面积取最大值时,点的坐标;(3)已知点是二次函数图象在轴右侧部分上的一个动点,若的外接圆直径为,试问:以、、为顶点的三角形与能否相似?若能,请求出点的坐标;若不能,请说明理由.
11.已知抛物线与轴交于,两点,(在的左侧),与轴交于,若,且.(1)求抛物线的解析式;(2)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标;(3)在抛物线上是否存在一点,过作轴于,以、、为顶点的三角形与相似,若存在,求出所有符合条件的点坐标,若不存在,请说明理由.
12.如图,已知过坐标原点的抛物线经过,,,两点,且、是方程两根,抛物线顶点为.(1)求抛物线的解析式;(2)若点在抛物线上,点在抛物线的对称轴上,且以、、、为顶点的四边形是平行四边形,求点的坐标;(3)是抛物线上的动点,过点作轴,垂足为,是否存在点使得以点、、为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.
13.(2022春·全国·九年级专题练习)已知,如图二次函数的图象与轴交于点,与轴交于点,,点,抛物线的对称轴为,直线交抛物线于点.(1)求二次函数的解析式并写出点坐标;(2)点是中点,点是线段上一动点,当和相似时,求点的坐标.
14.如图,抛物线与轴交于,两点,与轴交点(1)求抛物线的解析式以及顶点的坐标;(2)若是线段的中点,连接,猜想线段与线段之间有怎样的数量关系,并证明你的猜想;(3)在坐标轴上是否存在点,使得以P、A、C为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.
15.如图,平面直角坐标系中,点、、在轴上,点、在 轴上,,,,直线与经过、、三点的抛物线交于、两点,与其对称轴交于.点为线段上一个动点(与、不重合),PQ∥y轴与抛物线交于点.(1)求经过、、三点的抛物线的解析式;(2)是否存在点,使得以、、为顶点的三角形与相似?若存在,求出满足条件的点的坐标;若不存在,请说明理由.
16.(2022秋·湖南郴州·九年级校考期末)如图1,平面直角坐标系中,抛物线交轴于,两点(点在点的右边),交轴于点.点是线段上一个动点,过点作轴的垂线,交抛物线于点E.(1)求,两点的坐标;(2)求线段的最大值;(3)如图2,是否存在以点,,为顶点的三角形与相似?若存在,求点的坐标;若不存在,请说明理由.
相关试卷
这是一份九年级上册数学第22章 二次函数专题15 二次函数与矩形存在性问题,文件包含专题15二次函数与矩形存在性问题原卷版docx、专题15二次函数与矩形存在性问题解析版docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。
这是一份九年级上册数学第22章 二次函数专题13 二次函数与平行四边形存在性问题,文件包含专题13二次函数与平行四边形存在性问题原卷版docx、专题13二次函数与平行四边形存在性问题解析版docx等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。
这是一份九年级上册数学第22章 二次函数专题14 二次函数与菱形存在性问题,文件包含专题14二次函数与菱形存在性问题原卷版docx、专题14二次函数与菱形存在性问题解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。