终身会员
搜索
    上传资料 赚现金

    2022-2023学年江西省宜春市高安市灰埠中学高二下学期5月期中考试数学试题含答案

    立即下载
    加入资料篮
    2022-2023学年江西省宜春市高安市灰埠中学高二下学期5月期中考试数学试题含答案第1页
    2022-2023学年江西省宜春市高安市灰埠中学高二下学期5月期中考试数学试题含答案第2页
    2022-2023学年江西省宜春市高安市灰埠中学高二下学期5月期中考试数学试题含答案第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年江西省宜春市高安市灰埠中学高二下学期5月期中考试数学试题含答案

    展开

    这是一份2022-2023学年江西省宜春市高安市灰埠中学高二下学期5月期中考试数学试题含答案,共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
    2022-2023学年江西省宜春市高安市灰埠中学高二下学期5月期中考试数学试题 一、单选题1.复数满足为虚数单位),则的共轭复数的虚部为(    A B C D1【答案】B【分析】由已知等量关系,应用复数的除法可得,即可得共轭复数,进而确定虚部.【详解】由题设,,则所以的虚部为.故选:B2.若两个等差数列的前项和分别为,,则等于A B C D【答案】C【详解】故选:C.3过点的直线有两个不同的公共点,则直线的倾斜角的范围是A B C D【答案】B【分析】先讨论斜率不存在时,再讨论斜率存在时,设出直线方程,由直线与圆有两个不同的交点,可得圆心到直线的距离小于半径,列不等式求解即可.【详解】设直线的倾斜角为.若直线斜率不存在,此时x=0与圆有交点,.直线斜率存在,设为k,则过P的直线方程为y=kx+4kxy+4=0若过点(0,4)的直线l与圆有两个不同公共点,则圆心到直线的距离解得综上所述,故选B.【点睛】本题主要考查了直线与圆的位置关系,属于基础题.4.在正方体中,有下列四个命题:平面异面直线BD所成的角为直线与平面所成的角为.其中真命题的个数为(    A4 B3 C2 D1【答案】B【分析】结合空间中点线面的位置关系,对四个命题逐个分析,可选出答案.【详解】如图所示,在正方体中,,所以四边形是平行四边形,所以平面平面所以平面正确;连接,因为,所以平面平面,所以正确;连接,因为所以异面直线BD所成的角为(或补角),为等边三角形,故正确;连接,交于点,则平面平面平面,连接故直线与平面所成的角为在直角中,所以在直角中,错误.因此①②③正确,错误.故选:B.  【点睛】本题考查空间中直线与平面平行,直线与直线垂直、异面直线所成的角、直线与平面所成的角,考查学生的空间想象能力与计算求解能力,属于中档题.5.函数)的减区间为,则实数的值为(    A2 B C1 D4【答案】A【分析】利用导数的性质进行求解即可.【详解】显然该函数的定义域为全体正实数集,即,因为所以由可得:,因为函数)的减区间为,所以故选:A6.已知函数,若在处函数的图象的切线平行,则实数的值为(    A B C1 D4【答案】A【分析】分别求得,结合,即可求得的值.【详解】由函数,可得因为在处函数的图象的切线平行,可得,即,解得经检验,当时,满足题意,所以实数的值为.故选:A.7.设函数的定义域为,其导函数为,若,则下列结论不一定正确的是(    A BC D【答案】C【分析】根据题意令可得,即函数图象关于对称,即可判断A;根据抽象函数的奇偶性和对称性可得函数的周期为2,即可判断BD;由知函数图象关于直线对称,举例说明即可判断C.【详解】A,得,则函数图象关于点对称.,则函数图象关于点对称,符合题意,故A正确;B:由选项A的分析知,等式两边同时求导,,即为偶函数,所以①②,所以函数的周期为2.所以,即,故B正确;C:由选项B的分析知,则函数图象关于直线对称.,若则函数图象关于直线对称,不符合题意,故C错误;D:由选项B的分析可知函数的周期为2,则所以,故D正确.故选:C.8.设函数R上的导函数为,在,且,有,则(    ).A BC D【答案】A【分析】,确定函数的奇偶性与单调性,逐项判断即可得答案.【详解】,可得,则,所以R上的奇函数,又在,即所以上单调递减,又R上的奇函数,所以(-∞,0)上单调递减,所以,即因此,故,故A正确;所以,即,因此,故B不正确;所以,即,则所以的大小不能确定,故C不正确;所以,即,则所以的大小不确定,故D不正确.故选:A. 二、多选题9.已知等比数列的前项积为,则下列结论正确的是(    A BC D.若,则【答案】ABD【分析】由等比数列的性质及前项积的定义判断各选项即可.【详解】对于A,因为,所以,故A正确;对于B,因为,所以,故B正确;对于C,故C错误;对于D,若,则,解得,所以,故D正确.故选:ABD.10.设是数列的前项和.下面几个条件中,能推出是等差数列的为(    A.当时, B.当时,C.当时, D.当时,【答案】ABD【分析】的关系得出的关系式即可判断ABD,通过举反例即可判断出C【详解】对于A,当时,两式相减可得,即所以是恒为0的数列,即是公差为0的等差数列,故A正确;对于B,当时,两式相减可得,即所以,即是常数列,是公差为0的等差数列,故B正确;对于C,如果,令可得时,两式相减可得如果,则,这并不能推出是等差数列,例如:考虑如下定义的数列112233,则其通项公式可写成即数列112233满足对任意正整数成立,但它并不是等差数列,故C错误;对于D,当时,两式相减可得所以,即,即是公差为的等差数列,故D正确;故选:ABD11.已知直线,圆,则下列结论正确的是(    A.直线l恒过定点B.直线l与圆C恒有两个公共点C.直线l与圆C的相交弦长的最大值为D.当时,圆C与圆关于直线l对称【答案】ABD【分析】将直线方程变形为即可判断直线过定点,进而判断A;再根据定点在圆内判断B;根据直线与圆相交时,最大弦为直径判断C;根据点关于直线的对称性求解关于对称的点坐标,进而求解对称圆的方程判断D.【详解】解:对于A选项,因为直线可变形为,所以直线恒过定点,故A选项正确;对于B选项,因为,所以点在圆内,故直线与圆相交,由两个公共点,故B选项正确;对于C选项,对于圆,圆心为,半径为,当直线线与圆相交,故相交弦长的最大值为圆的直径,即为,故C选项错误;对于D选项,当时,直线,故圆的圆心关于对称的点的坐标为 ,所以圆关于对称的圆的方程为,故D选项正确.故选:ABD12.在椭圆中,其所有外切矩形的顶点在一个定圆上,称此圆为该椭圆的蒙日圆.该圆由法国数学家Monge1746-1818)最先发现.若椭圆,则下列说法正确的有(    A.椭圆外切矩形面积的最小值为48B.椭圆外切矩形面积的最大值为48C.点为蒙日圆上任意一点,点,当取最大值时,D.若椭圆的左右焦点分别为,过椭圆上一点和原点作直线与蒙日圆相交于点,则【答案】ACD【分析】先求得椭圆的蒙日圆方程,然后利用外切矩形的面积结合二次函数求最值可判断AB选项,利用两角和的正切公式,椭圆的定义,向量运算的转化来判断CD选项【详解】对于:如图,设对于椭圆上任意点,过点作椭圆的切线交圆两点,关于原点对称的点分别为,则椭圆的一个外切矩形为,由图象易知,圆心到直线的距离,所以.,所以外切矩形为的面积因此对,.对于:当与圆相切且切点在圆下方时,最大,.对于,故D正确.故选:ACD.【点睛】本题解题的关键一方面结合题目要求求出蒙日圆方程,建立参数间的关系式来表示面积进而利用函数求最值问题,另一方面结合椭圆定义式,向量的运算推导的关系,体现了数形结合的思想 三、填空题13.已知,且,则的最小值是      【答案】6【分析】根据均值不等式求最小值即可.【详解】由题意,得(当且仅当时取等号,即时取等号),的最小值是6故答案为:614.已知双曲线上不同的两点满足,其中为坐标原点,则的最小值为      【答案】24【分析】设直线的方程为,然后与双曲线方程联立方程组,求出点 的坐标,从而可得,再将直线的方程为与双曲线方程联立方程组,求出点 的坐标,从而可求出,进而可求出,再利用基本不等式可求出 的最小值【详解】由题意得直线的斜率都存在且不为0不妨设直线的方程为直线的方程为,得同理可得当且仅当时等号成立,的最小值为24故答案为:24【点睛】关键点点睛:求解本题的关键是在得到后,能根据表达式的特点得到,再得用基本不等式求解的最小值.15.已知函数,则不等式的解集为      【答案】【分析】先求出的定义域,证明是偶函数,当时,证明是增函数,根据题意列出不等式即可得到答案【详解】可得,解得的定义域为,所以是偶函数,时,是单调递增函数,,所以设任意的,且所以因为任意的,且,所以 所以,即所以上是单调递增函数,所以上是单调递增函数,上单调递增,因为是偶函数,所以上单调递减,可得,解得故答案为:16.点SABC在半径为的同一球面上,点S到平面ABC的距离为,则点S中心的距离为        【答案】【分析】的外接圆的圆心为.连接于点.由题意可求出,从而得到,即可得到,在中即可求出点S中心的距离 .【详解】如图所示:  的外接圆的圆心为.连接于点.因为.所以的外接圆半径.所以.因为点S到平面ABC的距离为,平面,所以 . 中: .所以 .故填:.【点睛】本题考查球上的点到三角形中心的距离的求法,属于中档题,解题时要认真审题,注意球的性质和空间思维能力的培养. 四、解答题17.已知数列,求:(1)的值(2)通项公式【答案】(1)(2) 【分析】1)直接计算即可.2)根据并验证的情况,计算得到答案.【详解】1,则.2)当时,时,满足.18.在中,角的对边分别为,且满足边上中线的长为.1)求角和角的大小;2)求的面积.【答案】1;(2【分析】1)根据余弦定理,可得,然后利用正弦定理,边化角,可得角.2)然后根据(1)的结论,可得,然后假设长度,利用余弦定理以及面积公式,可得结果.【详解】1)由所以,所以,所以所以,又所以2)由(1)可知,设所以,所以可得所以【点睛】本题考查了三角形的正弦定理、余弦定理以及面积公式的应用,属中档题.19.如图所示的几何体中,是菱形,平面.1)求证:平面2)求三棱锥的体积.【答案】1)证明见解析;(2.【分析】1)先证明平面ABP平面CDE,进而证得平面2)先证明平面BCF平面ADEF,进而根据解得答案.【详解】1APDE平面CDE平面CDE, ∴AP平面CDEABCD平面CDE平面CDE,所以AB平面CDE平面ABP平面ABP平面ABP平面CDE,又BP平面ABP平面.2)如图,在菱形ABCD中,ABC=60°,则ABC是正三角形,取BC的中点QAQBC,由AB=4,易得BCADAQAD.PA平面ABCDAQ平面ABCDPAAQ,而AQ平面PADE.BFAPBF平面ADEPAP平面ADEPBF平面ADEPBCADBC平面ADEPAD平面ADEPBC平面ADEPBFBC=B平面BCF平面ADEP.PAAD,且PA=AD=4DE=2.20.已知等比数列的前n项和为,其公比,且(1)求数列的通项公式;(2)已知,求数列的前n项和【答案】(1)(2) 【分析】1)由已知条件求出公比,直接写出等比数列的通项公式即可;2)由(1)得,分组求和即可,注意分类讨论的思想.【详解】1)因为是等比数列,公比为,则 所以,解得,可得,解得所以数列的通项公式为2)由(1)得n为偶数时,n为奇数时综上所述:.21.椭圆的左、右焦点分别为,右顶点为,上顶点为,且满足向量.1)若,求椭圆的标准方程;2)设为椭圆上异于顶点的点,以线段为直径的圆经过,问是否存在过的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由.【答案】1;(2)存在满足条件的直线,斜率.【分析】1)由题易知,因为,所以为等腰三角形所以b=c,由此可求,即可得到椭圆的标准方程;2)由(1)可得P的坐标为 由题意得,,又因为P在椭圆上,所以,联立可得设圆心为 ,则,利用两点间的距离公式可得圆的半径r.设直线的方程为:.利用直线与圆相切的性质即可得出.【详解】1)易知,因为所以为等腰三角形所以b=c,由可知故椭圆的标准方程为:2)由已知得,设椭圆的标准方程为P的坐标为 因为,所以由题意得,所以又因为P在椭圆上,所以,由以上两式可得因为P不是椭圆的顶点,所以,故设圆心为 ,则圆的半径 假设存在过的直线满足题设条件,并设该直线的方程为由相切可知,所以 ,解得 故存在满足条件的直线.【点睛】本题中考查了椭圆与圆的标准方程及其性质、点与椭圆的位置关系、直线与圆相切问题、点到直线的距离公式、中点坐标公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.22.已知函数.(1)若函数上单调递增,求的取值范围;(2)证明:当时,.【答案】(1)(2)证明见解析. 【分析】1)根据函数导数的性质,结合实数的正负性,通过构造函数、利用导数的性质分类讨论进行求解即可;2)通过构造新函数,利用函数的导数的性质分类讨论进行求解即可.【详解】1)函数上单调递增,恒成立,时,即,因为,则,又,所以,即恒成立,符合题意;时,令,则,设,则上递增,当时,,所以上递增,即,符合题意;时,,则存在,有时,递减,此时,不符合题意.综上所述:实数的取值范围2)证明:要证,即证即证,故上单调递增,又所以,又因为,所以所以时,因为,所以时,令,则,则,设,则,因为所以,所以上单调递增,所以,所以上单调递增,所以,即所以上单调递增,,即.综上可知,当时,.【点睛】关键点睛:构造函数,利用导数的性质分类讨论是解题的关键. 

    相关试卷

    2024届江西省宜春市高安市灰埠中学高三上学期期中数学试题含答案:

    这是一份2024届江西省宜春市高安市灰埠中学高三上学期期中数学试题含答案,共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江西省宜春市高安市灰埠中学高二上学期期中数学试题含答案:

    这是一份2023-2024学年江西省宜春市高安市灰埠中学高二上学期期中数学试题含答案,共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江西省宜春市高安市灰埠中学高一上学期期中数学试题含答案:

    这是一份2023-2024学年江西省宜春市高安市灰埠中学高一上学期期中数学试题含答案,共12页。试卷主要包含了单选题,多选题,填空题,解答题,应用题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map