福建省厦门市第九中学2021-2022学年八年级上学期期中考试数学试卷
展开
这是一份福建省厦门市第九中学2021-2022学年八年级上学期期中考试数学试卷,共5页。试卷主要包含了选择题等内容,欢迎下载使用。
2021-2022学年八年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.2020年初,新型冠状病毒引发肺炎疫情.全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分其中是轴对称图形的是( )A.齐鲁 B.华西 C.湘雅 D.协和2.已知三角形两边长分别为7、10,那么第三边的长可以是( )A.2 B.3 C.17 D.53.下列计算正确的是( )A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a6 D.a3÷a2=a4.平面直角坐标系中,点P(a,1)与点Q(3,b)关于x轴对称,则a的值是( )A.1 B.﹣1 C.3 D.﹣35.如图所示,工人师傅在砌门时,通常用木条BD固定长方形门框ABCD,使其不变形这样做的数学根据是( )A.对顶角相等 B.两点之间,线段最短 C.三角形具有稳定性 D.垂线段最短6.在三角板拼角活动中,小明将一副三角板按如图方式叠放,则拼出的∠α度数为( )A.65° B.75° C.105° D.115°7.如图,在5×5的正方形网格中,△ABC的三个顶点都在格点上,则与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点都在格点上的三角形)共有( )A.3个 B.4个 C.5个 D.6个8.如图,在△ABC中,AC=18,∠C=∠BAD=30°,AD⊥BC,垂足为D,BE平分∠ABC交AD于点E,则DE的长为( )A. B.3 C.2 D.69.已知10a=20,100b=50,则a+2b+3的值是( )A.2 B.6 C.3 D.10.如图,等边△ABC中,BD⊥AC于D,QD=15,点P、Q分别为AB、AD上的两个定点且BP=AQ=20,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为( )A.35 B.40 C.50 D.60二.填空题(每小题4分,共24分)11.计算:(xy)2= .(﹣m2)3= .2a•(﹣3b)= .(a6﹣2a3)÷a3= .12.五边形内角和为 .13.如图,直线MN是线段AB的中垂线,点C不在MN上,连接CA与MN相交于点D,连接DB、CB,如果AC=8,BC=5,那么△BCD的周长等于 .14.因式分解:xy2﹣4x= ;因式分解(a﹣b)2+4ab= .15.如图,BD是△ABC的角平分线,E是AB上的中点,已知△ABC的面积是12cm2,BC:AB=19:17,则△AED面积是 .16.已知有甲、乙两个长方形,它们的边长如图所示(m为正整数),甲、乙的面积分别为S1,S2.(1)S1与S2的大小关系为:S1 S2;(用“>”、“<”、“=”填空)(2)若满足条件21<n≤|S1﹣S2|的整数n有且只有4个,则m的值是 .三.解答题(共86分)17.先化简再求值:(1)当x=1,求代数式(﹣2x)2+(x+3)(x﹣3)的值.(2)当ab=﹣1,求代数式(a﹣b)2﹣(a+b)2的值18.解方程组:.19.解不等式组:,并把不等式组的解集表示在数轴上.20.如图,△ABC与△DEF中,B、E、C、F在同一条直线上,BE=CF,∠A=∠D,AC∥DF,求证:AC=DF.21.如图,△ABC中.(1)尺规作图:在直线BC上求作一点P,使△APC是以AC为底边的等腰三角形(不写作法,保留作图痕迹)(2)若∠C=60°,∠B=90°,AC=6,求BP的长.22.如图,已知AC平分∠BAD,CE⊥AB,CD⊥AD,点E,D分别为垂足,CF=CB.(1)求证:BE=FD.(2)若AF=4,AB=6,求DF.23.如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.24.阅读下列材料:若一个正整数x能表示成a2﹣b2(a,b是正整数,且a>b)的形式,则称这个数为“明礼崇德数”,a与b是x的一个平方差分解.例如:因为5=32﹣22,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:M=x2+2xy=x2+2xy+y2﹣y2=(x+y)2﹣y2(x,y是正整数),所以M也是“明礼崇德数”,(x+y)与y是M的一个平方差分解.(1)判断:9 “明礼崇德数”(填“是”或“不是”);(2)已知(x2+y)与x2是P的一个平方差分解,求P;(3)已知N=x2﹣y2+4x﹣6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.25.如图,等腰直角△ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中:(1)点B坐标为(0,2),点C坐标为(6,0),求点A的坐标;(2)点B坐标为(0,m),点C坐标为(n,0),连接OA,若P为坐标平面内异于点A的点,且以O、P、C为顶点的三角形与△OAC全等,请直接写出满足条件的点P的坐标(用含m,n的式子表示).
相关试卷
这是一份福建省厦门市湖里实验中学2022-2023学年八年级下学期期中考试数学试卷,共2页。
这是一份福建省厦门市逸夫中学2021-2022学年八年级上学期期末数学试卷(含答案),共16页。
这是一份福建省厦门市思明区逸夫中学2021-2022学年八年级上学期期中数学试卷(含答案),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。