2022-2023学年河南省安阳市殷都区七年级(下)期末数学试卷(含解析)
展开
这是一份2022-2023学年河南省安阳市殷都区七年级(下)期末数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年河南省安阳市殷都区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分。在每小题列出的选项中,选出符合题目的一项)1. 下列四个数中,是无理数的为( )A. B. C. D. 2. 下列调查中,适合采用全面调查方式的是( )A. 了解全市中小学生的睡眠时间
B. 了解全市中学生每周体育锻炼的时间
C. 了解中央电视台开学第一课的收视率
D. 了解某班学生校服的尺码情况3. 在平面直角坐标系中,点所在的象限是( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限4. 不等式组的解集在数轴上表示正确的是( )A. B.
C. D. 5. 若,则下列结论中错误的是( )A. B. C. D. 6. 下列各式中,正确的是( )A. B. C. D. 7. 点是直线外一点,点,,为直线上三点,且,,,则点到直线的距离( )A. 小于 B. 等于 C. 不大于 D. 等于8. 如图,,,和互余,则的度数为( )
A. B. C. D. 9. 九章算术中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三:人出七,不足四.问人数,物价各几何?意思是:现有一些人共同买一个物品,每人出元,还盈余元;每人出元,则还差元.问共有多少人?这个物品的价格是多少?设共有人,物品的价格为元,可列方程组为( )A. B. C. D. 10. 如图,动点在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点,第二次运动到点,第三次运动到点,,按这样的运动规律,第次运动后,动点的坐标是( )
A. B. C. D. 二、填空题(本大题共5小题,共15.0分)11. 的相反数是______ .12. 把“的倍与的和不小于”用不等式表示得______.13. 月日是全国爱眼日,某校对七年级学生进行了视力监测,收集了部分学生的监测数据,并绘制成了频数分布直方图,从左至右每个小长方形的高的比为:::,其中第三组的频数为,则共收集了______ 名学生的监测数据.14. 若关于,的二元一次方程组的解满足,则的值为______ .15. 欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知,,,则的度数是______
三、解答题(本大题共8小题,共75.0分。解答应写出文字说明,证明过程或演算步骤)16. 本小题分
计算:
;
.17. 本小题分
解方程:.18. 本小题分
解不等式组,并写出它的所有整数解.19. 本小题分
直线,相交于点,且是钝角,在的内部作射线,且.
请根据已知条件画出图形;
若,求的度数;
若::,求的度数.20. 本小题分
阅读是人类获取知识、启智增慧、培养道德的重要途径,阅读让人思想得到启发,树立崇高理想,涵养浩然之气某中学为了解学生课外阅读情况,随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为小时,将它分为个等级:,,,,并根据调查结果绘制了如下两幅不完整的统计图:
请你根据统计图的信息,解决下列问题:
本次共调查了______ 名学生;
补全条形统计图;
在扇形统计图中,等级所对应的扇形的圆心角为______ ;
若该校共有学生名,请估计该校每周课外阅读时间不少于小时的学生人数.21. 本小题分
完成下面的证明.
如图,,,.
求证:.
证明:;已知
______ ;______
;已知
______ ;______
______ ;______
;已知
______ ;______
______
22. 本小题分
我市某中学为支援贫困山区,准备用筹集的资金购买,两种学习用品已知购买件学习用品比购买件学习用品多用元,且购买件学习用品和件学习用品共需花费元.
求、两种学习用品的单价分别为多少元?
若学校准备购买这两种学习用品共件,且花费资金不超过元,求最多能购买学习用品多少件?23. 本小题分
如图,在平面直角坐标系中,点,的坐标分别为,,现同时将点,分别向上平移个单位长度,再向右平移个单位长度,得到,的对应点,,连接,,.
写出点,的坐标;
若点是轴上一点,且三角形的面积是三角形面积的倍,求点的坐标;
如图,点是直线上一个动点,连接,,当点在直线上运动时,请直接写出与,之间的数量关系.
答案和解析 1.【答案】 【解析】解:是整数,属于有理数,不符合题意;
B.是无理数,符合题意;
C.是分数,属于有理数,不符合题意;
D.是分数,属于有理数,不符合题意.
故选:.
根据无理数的定义:无限不循环的小数叫无理数,即可求解.
本题考查无理数的定义,解题的关键是掌握无理数的定义,学会识别无理数.
2.【答案】 【解析】解:了解全市中小学生的睡眠时间,适宜采用抽样调查,故本选项不符合题意;
B.了解全市中学生每周体育锻炼的时间,适宜采用抽样调查,故本选项不符合题意;
C.了解中央电视台开学第一课的收视率,适宜采用抽样调查,故本选项不符合题意;
D.了解某班学生校服的尺码情况,适合全面调查,故本选项符合题意.
故选:.
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3.【答案】 【解析】【分析】
本题考查了象限内的点的符号特点,注意加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.
先判断出点的横坐标的符号,再根据各象限内点的符号特征判断点所在象限即可.
【解答】
解:为非负数,
为正数,
点的符号为
点在第四象限.
故选:. 4.【答案】 【解析】解:解不等式,得:,
则不等式组的解集为,
故选:.
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5.【答案】 【解析】解:、在不等式的两边同时减去,不等式仍成立,即,故本选项不符合题意;
B、在不等式的两边同时乘以,不等号方向改变,即,故本选项符合题意;
C、在不等式的两边同时加上,不等式仍成立,即,故本选项不符合题意;
D、在不等式的两边同时乘以,不等式仍成立,即,故本选项不符合题意;
故选:.
根据不等式的性质作答.
考查了不等式的性质,做这类题时应注意:不等式的基本性质是有条件的,如果不符合其中的条件,那么运用此性质得出的结论是不对的.不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
6.【答案】 【解析】解:.,故本选项不符合题意,
B.,故本选项不符合题意,
C.,故本选项符合题意,
D.,故本选项不符合题意.
故选:.
根据二次根式的性质和立方根的定义进行计算即可.
本题考查了二次根式的性质与花简,立方根的定义等知识点,注意:当时,,当时,.
7.【答案】 【解析】解:直线外一点与直线上各点连接的所有线段中,垂线段最短,
点到直线的距离,
即点到直线的距离不大于.
故选:.
根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.
本题主要考查了垂线段最短的性质,熟记性质是解题的关键.
8.【答案】 【解析】解:,,
,
和互余,
,
,
故选:.
先根据平行线的性质可得,然后利用余角的定义进行计算即可解答.
本题考查了平行线的性质,余角和补角,根据题目的已知条件并结合图形进行分析是解题的关键.
9.【答案】 【解析】解:依题意,得:.
故选:.
根据“每人出元,还盈余元;每人出元,则还差元”,即可得出关于,的二元一次方程组,此题得解.
本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
10.【答案】 【解析】解:动点第一次从原点运动到点,第二次运动到点,第三次运动到,第四次运动到,第五次运动到,第六次运动到,,
横坐标与下标相同,纵坐标每次运动组成一个循环:,,,,,;
,
经过第次运动后,动点的横坐标为,纵坐标是,即:.
故选:.
观察图象,得出点运动的规律,再根据循环规律可得答案.
本题考查了规律型点的坐标,数形结合并从图象中发现循环规律:纵坐标每次运动组成一个循环是解题的关键.
11.【答案】 【解析】解:由相反数的定义可知,的相反数是.
故答案为:
根据相反数的定义进行解答,即只有符号不同的两个数交互为相反数.
本题考查的是相反数的定义,比较简单.
12.【答案】 【解析】解:的倍为,
的倍与的和不小于可表示为:.
故答案为:.
由“的倍与的和不小于”得出关系式为:的倍,把相关数值代入即可.
此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
13.【答案】 【解析】解:由题意知,共收集监测数据的学生人数为名,
故答案为:.
用第三组的频数除以即可得出答案.
本题主要考查频数分布直方图,解题的关键是掌握直方图中小长方形的高与数据频数间的关系.
14.【答案】 【解析】解:,
得:,
,
代入得:,
解得:.
故答案为:.
方程组两方程相加表示出,代入计算即可求出的值.
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
15.【答案】 【解析】解:如图,延长交于,
,,
,
又,
.
故答案为:.
延长交于,依据,,可得,再根据三角形外角性质,即可得到.
本题主要考查了平行线的性质,三角形外角的性质,解决问题的关键是掌握:两直线平行,同位角相等.
16.【答案】解:
;
. 【解析】先去绝对值符号,再根据算术平方根和立方根化简,最后合并即可;
先去括号,再算乘方,最后合并即可.
本题主要考查了实数的混合运算,能熟练地运用运算法则进行计算是解此题的关键.
17.【答案】解:,
由,得:,
解得:.
将代入,得,
解得:.
故原方程组的解为:. 【解析】根据加减消元法求解即可.
本题考查解二元一次方程组,掌握解二元一次方程组的方法是解题关键.
18.【答案】解:由,得:,
由,得:,
故原不等式组的解集为,
故它的所有整数解为,. 【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
19.【答案】解:如图所示;
,
,
,
;
::,,
,
,
,
. 【解析】由题意即可画出图形;
由垂直的定义求出,由平角定义即可得到;
由邻补角的性质求出,由对顶角的性质得到,即可求出.
本题考查垂线,对顶角,邻补角,关键是由邻补角的性质求出的度数.
20.【答案】 【解析】解:本次共调查的学生人数有:名,
故答案为:;
等级的人数有:名,
补全条形统计图如下:
等级所对应的扇形的圆心角为:;
故答案为:;
根据题意得:名,
答:估计该校每周课外阅读时间不少于小时的学生人数有名.
由等级人数及其所占百分比可得被调查的总人数;
用总人数减去其他等级的人数,求出等级的人数,从而补全条形统计图;
用乘以等级人数所占的百分比即可;
用总人数乘以每周阅读时间不少于小时的学生所占的百分比即可.
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21.【答案】 内错角相等,两直线平行 两条直线都与第三条直线平行,那么这两直线也互相平行 两直线平行,内错角相等 等量代换 同旁内角互补,两直线平行 【解析】证明:已知,
内错角相等,两直线平行,
已知,
两条直线都与第三条直线平行,那么这两直线也互相平行,
两直线平行,内错角相等,
已知,
等量代换,
同旁内角互补,两直线平行,
故答案为:,内错角相等,两直线平行;;两条直线都与第三条直线平行,那么这两直线也平行;;两直线平行,内错角相等,;等量代换;同旁内角互补,两直线平行.
先根据平行线的性质可得,再由,可得,根据同旁内角互补两直线平行可得.
题主要考查了平行线的判定与性质,关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.
22.【答案】解:设种学习用品的单价为元,种学习用品的单价为元,
由题意可得:,
解得,
答:种学习用品的单价为元,种学习用品的单价为元;
设购买学习用品件,则购买学习用品件,
由题意可得:,
解得,
即最多能购买学习用品件. 【解析】根据购买件学习用品比购买件学习用品多用元,且购买件学习用品和件学习用品共需花费元,可以列出相应的二元一次方程组,然后求解即可;
根据学校准备购买这两种学习用品共件,且花费资金不超过元,可以列出相应的不等式,然后即可求得最多能购买学习用品多少件.
本题考查二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程组和不等式.
23.【答案】解:点,的坐标分别为,,
将点,分别向上平移个单位长度,再向右平移个单位长度,
,;
设点,
三角形的面积是三角形面积的倍,
,
,
或,
点或;
如图,当点在线段的延长线上时,设与交于点,与,之间的数量关系.
将点,分别向上平移个单位长度,再向右平移个单位长度,
,
,
,
;
如图,当点在线段上时,过点作,
,
,
,,
,
;
如图,当点在线段的延长线上时,设与交于点,
,
,
,
,
综上所述:或或. 【解析】由平移的性质可求解;
由三角形的面积关系可列出等式,即可求解;
分三种情况讨论,由平行线的性质可求解.
本题是几何变换综合题,考查了平行线的性质,三角形外角的性质,以及点的平移的规律,对点的位置进行分类讨论是解题的关键.
相关试卷
这是一份2022-2023学年河南省安阳市殷都区等四地九年级(上)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年河南省安阳市殷都区等四地九年级(上)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年河南省安阳市殷都区中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。