广东省茂名市电白区2022-2023学年七下数学期末考试模拟试题含答案
展开广东省茂名市电白区2022-2023学年七下数学期末考试模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.已知点都在反比例函数图象上,则的大小关系( )
A.. B.
C. D.
2.如图,在中,,于点,和的角平分线相较于点,为边的中点,,则( )
A.125° B.145° C.175° D.190°
3.下列约分计算结果正确的是( )
A. B. C. D.
4.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
5.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )
A. B. C. D.2
6.已知a>b,c≠0,则下列关系一定成立的是( ).
A.ac>bc B. C.c-a>c-b D.c+a>c+b
7.下列计算正确的是( )
A. B.2 C.()2=2 D.=3
8.已知关于的方程的两根互为倒数,则的值为( )
A. B. C. D.
9.若的整数部分为x,小数部分为y,则的值是( )
A. B. C.1 D.3
10.一元二次方程的解为( )
A. B.B. C., D.,
二、填空题(本大题共有6小题,每小题3分,共18分)
11.计算:(﹣)2=_____.
12.不等式组的解集为______.
13.如图,在平面直角坐标系xOy中,菱形AOBC的边长为8,∠AOB=60°. 点D是边OB上一动点,点E在BC上,且∠DAE=60°.
有下列结论:
①点C的坐标为(12,);②BD=CE;
③四边形ADBE的面积为定值;
④当D为OB的中点时,△DBE的面积最小.
其中正确的有_______.(把你认为正确结论的序号都填上)
14.若,则= .
15.二次三项式是一个完全平方式,则k=_______.
16.如图,在正方形ABCD中,以A为顶点作等边三角形AEF,交BC边于点E,交DC边于点F,若△AEF的边长为2,则图中阴影部分的面积为_____.
三、解下列各题(本大题共8小题,共72分)
17.(8分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:
(1)小帅的骑车速度为 千米/小时;点C的坐标为 ;
(2)求线段AB对应的函数表达式;
(3)当小帅到达乙地时,小泽距乙地还有多远?
18.(8分)如图,在平面直角坐标系中,A(3,0),B(0,3),过点B画y轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点C画CE⊥OC交直线l于点E.
(1)求∠OBA的度数,并直接写出直线AB的解析式;
(2)若点C的横坐标为2,求BE的长;
(3)当BE=1时,求点C的坐标.
19.(8分)如图,,、分别是、的中点,图①是沿将折叠,点落在上,图②是绕点将顺时针旋转.
(1)在图①中,判断和形状.(填空)_______________________________________
(2)在图②中,判断四边形的形状,并说明理由.
20.(8分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:
商品名称 | 甲 | 乙 |
进价(元/件) | 40 | 90 |
售价(元/件) | 60 | 120 |
设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.
(Ⅰ)写出y关于x的函数关系式;
(Ⅱ)该商场计划最多投入8000元用于购买这两种商品,
①至少要购进多少件甲商品?
②若销售完这些商品,则商场可获得的最大利润是多少元?
21.(8分)已知等腰三角形的周长为, 底边长是腰长的函数.
写出这个函数关系式;
求自变量的取值范围;
画出这个函数的图象.
22.(10分)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正边形ABCD……X”,请你作出猜想:当∠AMN=" " °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
23.(10分)如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC,CD于E、F.
(1)试说明△CEF是等腰三角形.
(2)若点E恰好在线段AB的垂直平分线上,试说明线段AC与线段AB之间的数量关系.
24.(12分)已知,矩形OCBA在平面直角坐标系中的位置如图所示,点C在x轴的正半轴上,点A在y轴的正半轴上,已知点B的坐标为(2,4),反比例函数y=的图象经过AB的中点D,且与BC交于点E,顺次连接O,D,E.
(1)求反比例函数y=的表达式;
(2)y轴上是否存在点M,使得△MBO的面积等于△ODE的面积,若存在,请求出点M的坐标;若不存在,请说明理由;
(3)点P为x轴上一点,点Q为反比例函数y=图象上一点,是否存在点P,点Q,使得以点P,Q,D,E为顶点的四边形为平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、C
4、B
5、A
6、D
7、C
8、C
9、C
10、D
二、填空题(本大题共有6小题,每小题3分,共18分)
11、.
12、1<x≤1
13、①②③
14、1.
15、±6
16、1
三、解下列各题(本大题共8小题,共72分)
17、 (1)16,C(0.5,0);(2);(3)4千米.
18、(3)直线AB的解析式为:y=﹣x+3;(3)BE=3;(3)C的坐标为(3,3).
19、(1)和均为等腰三角形;(2)四边形为平行四边形,证明详见解析.
20、 (Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.
21、(1);(2);(3)见详解.
22、(1)见详解;(2)见详解;(3)
23、(1)见解析(2)见解析
24、(1)y=;(2)M(0,3)或(0,﹣3);(3)存在;以P、Q、D、E为顶点的四边形为平行四边形的Q点的坐标为(﹣2,﹣2)或(,6).
2023-2024学年广东省茂名市电白区九上数学期末统考模拟试题含答案: 这是一份2023-2024学年广东省茂名市电白区九上数学期末统考模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,已知a≠0,下列计算正确的是等内容,欢迎下载使用。
2023年广东省茂名市电白区中考数学一模试卷: 这是一份2023年广东省茂名市电白区中考数学一模试卷,共15页。
2023-2024学年广东省茂名市电白区九年级上学期期中数学质量检测模拟试题(含解析): 这是一份2023-2024学年广东省茂名市电白区九年级上学期期中数学质量检测模拟试题(含解析),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。