终身会员
搜索
    上传资料 赚现金

    第4讲 素养提升之数列新情境、新考法专项冲刺-【冲刺双一流】备战2023年高考数学二轮复习核心专题讲练(新高考版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第4讲 素养提升之数列新情境、新考法专项冲刺 (原卷版).docx
    • 解析
      第4讲 素养提升之数列新情境、新考法专项冲刺 (解析版).docx
    第4讲 素养提升之数列新情境、新考法专项冲刺 (原卷版)第1页
    第4讲 素养提升之数列新情境、新考法专项冲刺 (原卷版)第2页
    第4讲 素养提升之数列新情境、新考法专项冲刺 (原卷版)第3页
    第4讲 素养提升之数列新情境、新考法专项冲刺 (解析版)第1页
    第4讲 素养提升之数列新情境、新考法专项冲刺 (解析版)第2页
    第4讲 素养提升之数列新情境、新考法专项冲刺 (解析版)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第4讲 素养提升之数列新情境、新考法专项冲刺-【冲刺双一流】备战2023年高考数学二轮复习核心专题讲练(新高考版)

    展开

    第4讲 素养提升之数列新情境、新考法专项冲刺
    目录
    一、新情境
    角度1:紧跟社会热点
    角度2:关注经济发展
    角度3:聚焦科技前沿
    角度4:结合生产实践
    角度5:渗透数学文化
    角度6:强调五育并举
    二、新考法
    角度1:以高观点为背景
    角度2:以给定定义、热点信息为背景
    角度3:考查开放、探究精神
    角度4:考查数学运算、数据分析得核心素养
    角度5:相近学科融合










    一、新情境
    角度1:紧跟社会热点
    1.(2022·陕西·汉阴县第二高级中学一模(理))南京市地铁S8号线经扩建后于2022年国庆当天正式运行,从起点站长江大桥北站到终点站金牛湖站总行程大约为51.3千米,小张是陕西来南京游玩的一名旅客,从起点站开始,他利用手机上的里程表测出前两站的距离大约为2千米,以后每经过一站里程约增加0.1千米,据此他测算出本条地铁线路的站点(含起始站与终点站)数一共有(    )
    A.18 B.19 C.21 D.22
    2.(2022·江苏连云港·高二期末)图1是第七届国际数学教育大会(简称ICME­7)的会徽图案,会徽的主体图案是由如图2所示的一连串直角三角形演化而成的,其中,如果把图2中的直角三角形继续作下去,记的长度构成的数列为,由此数列的通项公式为(    )

    A. B. C. D.
    3.(2022·浙江衢州·高三阶段练习)衢州市某中学开展做数学题猜密码益智活动.已知数列的通项,,数列的通项,现将数列和中所有的项混在一起,按照从小到大的顺序排成数列,若满足成立的的最小值为,若该中学密码为计算结果小数点的后6位,则该中学的WiFi的密码为(    )
    A.461538 B.255815 C.037036 D.255813
    4.(2022·广西桂林·高三开学考试(理))在2022北京冬奥会开幕式上,二十四节气倒计时惊艳亮相,与节气相配的14句古诗词,将中国人独有的浪漫传达给了全世界.我国古代天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同,即太阳照射物体影子的长度增长或减少的量相同,周而复始(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度),二十四节气及晷长变化如图所示,已知雨水的晷长为9.5尺,立冬的晷长为10.5尺,则大雪所对的晷长为(    )

    A.11.5尺 B.12.5尺 C.13.5尺 D.14.5尺
    角度2:关注经济发展
    1.(2022·山东烟台·高三期中)为响应国家加快芯片生产制造进程的号召,某芯片生产公司于2020年初购买了一套芯片制造设备,该设备第1年的维修费用为20万元,从第2年到第6年每年维修费用增加4万元,从第7年开始每年维修费用较上一年上涨25%.设为第n年的维修费用,为前n年的平均维修费用,若万元,则该设备继续使用,否则从第n年起需对设备进行更新,该设备需更新的年份为(    )
    A.2026 B.2027 C.2028 D.2029
    2.(2022·甘肃·永昌县第一高级中学高二期中)冰墩墩作为北京冬奥会的吉祥物特别受欢迎,官方旗舰店售卖冰墩墩运动造型多功能徽章,若每天售出件数成递增的等差数列,其中第1天售出10000件,第21天售出15000件;价格每天成递减的等差数列,第1天每件100元,第21天每件60元,则该店第__________天收入达到最高.
    角度3:聚焦科技前沿
    1.(2022·陕西·虢镇中学高二阶段练习)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造卫星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{bn}:,,……依次类推,其中,则(    )
    A. B. C. D.
    角度4:结合生产实践
    1.(2022·山西吕梁·高三阶段练习)习近平总书记在党的二十大报告中提出:坚持以人民为中心发展教育,加快建设高质量教育体系,发展素质教育,促进教育公平,加快义务教育优质均衡发展和城乡一体化.某师范大学学生会为贯彻党的二十大精神,成立“送教下乡志愿者服务社”,分期分批派遣大四学生赴乡村支教.原计划第一批派遣20名学生,以后每批都比上一批增加5人.由于志愿者人数暴涨,服务社临时决定改变派遣计划,具体规则为:把原计划拟派遣的各批人数依次构成的数列记为,在数列的任意相邻两项与(,2,)之间插入个3,使它们和原数列的项构成一个新的数列.按新数列的各项依次派遣支教学生.记为派遣了70批学生后支教学生的总数,则的值为(    )
    A.387 B.388 C.389 D.390
    角度5:渗透数学文化
    1.(2022·黑龙江·哈尔滨市第六中学校高三期中)一百零八塔,位于宁夏吴忠青铜峡市,是始建于西夏时期的实心塔群,共分十二阶梯式平台,自上而下一共12层,每层的塔数均不少于上一层的塔数,总计108座.已知其中10层的塔数成公差不为零的等差数列,剩下两层的塔数之和为8,则第11层的塔数为(    )

    A.17 B.18 C.19 D.20
    2.(2022·重庆巴蜀中学高三阶段练习)在2022年北京冬残奥会闭幕式上,出现了天干地支时辰钟表盘.天干地支纪法源于中国,不仅用于纪时纪日,也可用于纪年.天干地支具体分为十天干与十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥,天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”.橙子辅导创立于1933年(癸酉),以此类推即将迎来的九十周年校庆的2023年为(    )
    A.壬寅 B.壬卯 C.癸寅 D.癸卯
    3.(2022·江苏省苏州第十中学校高二阶段练习)分形几何学是美籍法国数学家伯努瓦·B·曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.下图是按照,的分形规律生长成的一个树形图,则第10行的实心圆点的个数是(    )

    A.89 B.55 C.34 D.144
    4.(2022·安徽·阜阳师范大学附属中学高三阶段练习)山西大同的辽金时代建筑华严寺的大雄宝殿共有9间,左右对称分布,最中间的是明间,宽度最大,然后向两边均依次是次间、次间、梢间、尽间.每间宽度从明间开始向左右两边均按相同的比例逐步递减,且明间与相邻的次间的宽度比为.若设明间的宽度为,则该大殿9间的总宽度为(    )
    A. B.
    C. D.
    5.(2022·吉林·辽源市第五中学校高二阶段练习)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第一天走的路程为(    )
    A.63里 B.126里 C.192里 D.228里
    【答案】C
    【详解】由已知,设等比数列首项为,前n项和为,    公比为,,
    则 ,等比数列首项.
    故选:C.
    6.(2022·吉林·辽源市第五中学校高二阶段练习)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:,从第三项起,每个数等于它前面两个数的和,即,后来人们把这样的一列数组成的数列称为“斐波那契数列”.记,则(    )
    A. B. C. D.
    【答案】B
    【详解】因为,
    所以,
    又因为,所以,
    故选:B.
    7.(2022·吉林·东北师大附中模拟预测(文))谢尔宾斯基三角形(Sierppinskitriangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.先取一个实心正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的面积,那么黑色三角形为剩下的面积(我们称黑色部分为谢尔宾斯基三角形).用上面的方法可以无限操作下去,操作1次得到第2个图案,操作2次得到第3个图案……,若最大的三角形边长为2,则操作4次后得到的第5个图案中挖去的白色三角形个数为___________,挖去的面积为___________.

    8.(2022·湖北·丹江口市第一中学模拟预测)四色定理又称四色猜想、四色问题,是世界近代三大数学难题之一.地图四色定理最先是由一位叫古德里的英国大学生提出来的.四色定理的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色.”某同学在横格纸上研究填涂蓝、红、黄、绿4种颜色问题,如图,第1行有1个格子,第2行有2个格子,…,第n行有n个格子,将4种颜色在每行中分别进行涂色,每行相邻的格子颜色不同,记为第k行不同涂色种数,则_____,________.

    【答案】     324    
    【详解】由分步计数原理知每行的第一个格子有4重涂法,其余每个格子均有3种涂法,故种,,
    则①,
    所以②,
    ①-②得,即.
    故答案为:324,
    角度6:强调五育并举
    1.(2022·陕西·渭南市三贤中学高二期中)图1是中国古代建筑中的举架结构,,,,是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中,,,是举,,,,是相等的步,相邻桁的举步之比分别为,,,,已知,,成公差为0.1的等差数列,且直线的斜率为0.725,则(    )

    A.0.75 B.0.8 C.0.85 D.0.9
    2.(2022·福建三明·高二阶段练习)定义各项为正数的数列的“美数”为.若各项为正数的数列的“美数”为,且,则______.
    3.(2022·全国·高三专题练习)在边长为243的正三角形三边上,分别取一个三等分点,连接成一个较小的正三角形,然后在较小的正三角形中,以同样的方式形成一个更小的正三角形,如此重复多次,得到如图所示的图形(图中共有10个正三角形),其中最小的正三角形的面积为(    )

    A. B.1 C. D.
    4.(2022·广东·深圳市第七高级中学高三阶段练习)如图,是一块半径为的半圆形纸板,在的左下端剪去一个半径为的半圆后得到图形,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形,,…,,…,记第块纸板的面积为,则______,如果,恒成立,那么的取值范围是______.

    5.(2022·江苏无锡·模拟预测)“刺绣”是一门传统手工艺术,我国已有多种刺绣列入世界非遗文化遗产名录.有一种刺绣的图案由一笔画构成,很像汉字“回”,称为“回纹图”(如图). 某刺绣工在方格形布料上用单线针法绣回纹图,共进行了次操作,每次操作在前一次基础上向外多绣一圈(前三次操作之后的图案分别如下图) . 若第次操作之后图案所占面积为(即最外围不封口的矩形面积,如),则至少操作_______次,不少于;若每横向或纵向一个单位长度绣一针,称为“走一针”,如图①共走了针,如图②共走了针,如图③共走了针,则其第次操作之后的回纹图共走了______________针(用表示).
    6.(2022·全国·高三专题练习(文))某校在研究民间剪纸艺术时,经常会沿着纸的某条对称轴把纸对折,规格为的长方形纸,对折一次可以得到和两种规格的图形,他们的周长之和为,对折二次可以得到,,三种规格的图形,他们的周长之和为,以此类推,则折叠次后能得到的所有不同图形的周长和为___________,如果对折次后,能得到的所有图形的周长和记为,则___________.

    二、新考法
    角度1:以高观点为背景
    1.(2022·宁夏·银川一中高三阶段练习(文))英国物理学家牛顿用“作切线”的方法求函数的零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列满足,则称数列为牛顿数列,如果,数列为牛顿数列,设且,,数列的前项和为,则(    )
    A. B. C. D.
    2.(2022·广东广州·高二期中)对于数列定义:,,,…,(其中),称数列为数列的阶差分数列.如果(常数)(),那么称数列是阶等差数列.现在设数列是2阶等差数列,且,,,则数列的通项公式为_________.
    3.(2022·吉林·辽源市第五中学校高二阶段练习)对给定的数列,记,则称数列为数列的一阶商数列;记,则称数列为数列的二阶商数列;以此类推,可得数列的P阶商数列,已知数列的二阶商数列的各项均为,且,则___________.

    4.(2022·上海·高二期中)定义:对于任意数列,假如存在一个常数使得对任意的正整数都有,且,则称为数列的“上渐近值”.已知数列有(为常数,且),它的前项和为,并且满足,令,记数列的“上渐近值”为,则的值为 _____.
    5.(2022·四川资阳·高一期末)分形几何学是一门以不规则几何形态为研究对象的几何学,通常是一个粗糙或零碎的几何形状,并可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状,即具有自相似的特征.如图,有一列曲线,,…,,…,且是边长为1的等边三角形,是对进行如下操作而得到:将曲线的每条边进行三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉记曲线的周长依次为,,…,,…,则______.


    角度2:以给定定义、热点信息为背景
    1.(2022·山东聊城·高三期中)若函数使得数列,为递增数列,则称函数为“数列保增函数”.已知函数为“数列保增函数”,则a的取值范围为(    ).
    A. B.
    C. D.
    2.(2022·全国·高三专题练习)对于数列,定义为数列的“好数”,已知某数列的“好数”,记数列的前项和为,若对任意的恒成立,则的取值范围为(    )
    A. B. C. D.
    3.(2022·河南三门峡·高三阶段练习(文))定义:如果一个数列从第二项起,每一项与前一项的和构成一个等比数列,则称该数列为“和等比”数列。已知“和等比数列的前三项分别为,,则数列的前11项和________.
    4.(2022·福建宁德·高三期中)对于数列{},若对任意,都有,则称该数列{}为“凸数列”.设,若是凸数列,则实数m的取值范围是(    )
    A. B. C. D.
    5.(2022·辽宁·沈阳市第四中学高三阶段练习)南宋数学家在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,高阶等差数中前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.现有高阶等差数列,其前7项分别为1,2,5,10,17,26,37,则该数列的第19项为(    )
    A.290 B.325 C.362 D.399
    角度3:考查开放、探究精神
    1.(2022·上海·高二专题练习)如图,在边长为1的正三角形中,,,,可得正三角形,以此类推可得正三角形正三角形,记,则__.

    2.(2022·甘肃·天水市第一中学高二阶段练习)如果数列1,6,15,28,45,中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第9个六边形数为______.

    3.(2022·湖南岳阳·高三阶段练习)将正整数分解为两个正整数的积,即,当两数差的绝对值最小时,我们称其为最优分解.如即为6的最优分解,当是的最优分解时,定义,则数列的前100项和为___________.
    4.(2022·全国·高三专题练习)中国古代数学史有许多光辉灿烂的篇章,“杨辉三角”就是其中十分精彩的一页.如图所示,在“杨辉三角”中,斜线上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前项和为,则__________.

    5.(2022·上海·华师大二附中高一期末)如图,在边长为1的正三角形ABC中,,,,可得正三角形,以此类推可得正三角形、…、正三角形,记,则______.

    角度4:考查数学运算、数据分析得核心素养
    1.(2022·山东青岛·高二期中)集合论是德国数学家康托尔于十九世纪末创立的,希尔伯特赞誉其为“数学思想的惊人产物,在纯粹理性范畴中人类活动的最美表现之一”.取一条长度为1的线段,将它三等分,去掉中间一段,留下的两段分割三等分,各去掉中间一段,留下更短的四段,……,将这样操作一直继续下去,直至无穷.由于在不断分割舍弃过程中,所形成的线段的数目越来越多,长度越来越小,在极限情况下,得到一个离散的点集,称为康托尔三分集.若在前次操作中共去掉的线段长度之和不小于,则的最小值为(    )
    (参考数据:,)
    A.9 B.8 C.7 D.6
    2.(2022·北京师大附中高三阶段练习)我们可以用下面的方法在线段上构造出一个特殊的点集:如图,取一条长度为的线段,第次操作,将该线段三等分,去掉中间一段,留下两段;第次操作,将留下的两段分别三等分,各去掉中间一段,留下四段;按照这种规律一直操作下去.若经过次这样的操作后,去掉的所有线段的长度总和大于,则的最小值为(    )
    (参考数据:,)

    A. B. C. D.
    3.(2022·江西省丰城中学高三阶段练习(理))杨辉是南宋杰出的数学家,他曾担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带.杨辉一生留下了大量的著述,他给出了著名的三角垛公式:.若正项数列的前项和为,且满足,数列的通项公式为,则根据三角垛公式,可得数列的前20项和(    )
    A.2620 B.2660 C.2870 D.2980
    4.(2022·湖南·长沙市同升湖高级中学有限公司高三阶段练习)若是函数的极值点,数列满足,,设,记表示不超过的最大整数,设,若不等式,对任意属于正整数都成立,则实数的最大值为(    ).
    A.1011 B.1012 C.2022 D.1010

    角度5:相近学科融合
    1.(2022·黑龙江·哈九中高三阶段练习)中国公民身份号码编排规定,女性公民的顺序码为偶数,男性为奇数,反映了性别与数字之间的联系;数字简谱以1,2,3,4,5,6,7代表音阶中的7个基本音阶,反映了音乐与数字之间的联系,同样我们可以对几何图形赋予新的含义,使几何图形与数字之间建立联系.如图1,我们规定1个正方形对应1个三角形和1个正方形,1个三角形对应1个正方形,在图2中,第1行有1个正方形和1个三角形,第2行有2个正方形和1个三角形,则在第9行中的正方形的个数为(    )

    A.53 B.55 C.57 D.59
    2.(2022·全国·高三专题练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为,第n根弦(,从左数第1根弦在y轴上,称为第0根弦)分别与雁柱曲线和直线交于点(,)和(,),则(     )     
    参考数据:取.


    A.814 B.900 C.914 D.1000
    3.(2022·全国·高三专题练习)十二平均律是我国明代音乐理论家和数学家朱载堉发明的,明万历十二年(公元1584年),他写成《律学新说》提出了十二平均律的理论十二平均律的数学意义是:在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是(    )
    A.插入的第8个数为 B.插入的第5个数是插入的第1个数的倍
    C. D.
    4.(2022·全国·高三专题练习)提丟斯—波得定则是关于太阳系中行星轨道的一个简单的几何学规则,它是1766年由德国的一位中学老师戴维·提丢斯发现的,后来被柏林天文台的台长波得归纳成一条定律,即数列:0.4,0.7,1,1.6,2.8,5.2,10,19.6,…表示的是太阳系第n颗行星与太阳的平均距离(以天文单位A.U.为单位).现将数列的各项乘以10后再减4得数列,可以发现从第3项起,每一项是前一项的2倍,则______,______.





    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map