初中数学青岛版八年级上册4.5 方差巩固练习
展开2023年青岛版数学八年级上册
《4.5 方差》课时练习
A.1,2,3,4,5 B.0,1,2,3,5
C.2,2,2,2,2 D.2,2,2,3,3
2.某村引进甲、乙两种水稻良种,各选6块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550 千克/亩,方差分别为s甲2=141.7,s乙2=433.3,则产量稳定、适合推广的品种为( )
A.甲、乙均可 B.甲 C.乙 D.无法确定
3.某校为选拔一名运动员参加市运动会100米短跑比赛,对甲、乙两名运动员都进行了5次测试.他们成绩的平均数均为12秒,其中甲测试成绩的方差S甲2=0.8.乙的5次测试成绩分别为:13,12.5,11,11.5,12(单位:秒).则最适合参加本次比赛的运动员是( )
A.甲 B.乙 C.甲、乙都一样 D.无法选择
4.在方差的计算公式S2=[(x1﹣20)2+(x2﹣20)2+…+(xn﹣20)2]中,数字10和20表示的意义分别是( )
A.平均数和数据的个数 B.数据的方差和平均数
C.数据的个数和方差 D.数据的个数和平均数
5.甲、乙、丙、丁四位备战南京青奥会射击选手在一次训练比赛中,这四位选手各射击10次,每人的平均成绩都是9.5环,方差如下表:
选手 | 甲 | 乙 | 丙 | 丁 |
方差(环2) | 0.35 | 0.018 | 0.22 | 0.055 |
则在这次训练比赛中,这四位选手发挥最稳定的是( )
A.甲 B.乙 C.丙 D.丁
6.已知一组数据a、b、c的平均数为5,方差为4,那么数据a-2、b-2、c-2的平均数和方差分别是( )
A.3、2 B.3、4 C.5、2 D.5、4
7.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.
根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐( )
A.李飞或刘亮 B.李飞 C.刘亮 D.无法确定
8.在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图,在这三人中,此次射击成绩最稳定的是( )
A.甲 B.乙 C.丙 D.无法判断
10.若样本1,2,3,x的平均数为5,又知样本1,2,3,x,y的平均数为6,则样本1,2,3,x,y的方差是 .
11.已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是 .
12.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是 .
13.若一个样本的方差是s2= [(x1﹣32)2+(x2﹣32)2+…+(xn﹣32)2],则该样本的容量是 ,样本平均数是 .
14.甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:
某同学分析上表后得到如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数少于甲班优秀的人数(竞赛得分≥85分为优秀);
③甲班成绩的波动性比乙班小.
上述结论中正确的是 .(填写所有正确结论的序号)
15.为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取10株并量出每株长度(单位:cm)如下表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | 12 | 13 | 14 | 15 | 10 | 16 | 15 | 11 | 13 | 11 |
乙 | 11 | 17 | 16 | 13 | 19 | 14 | 10 | 16 | 6 | 8 |
通过计算方差,评价哪个品种出苗更整齐.
16.某中学七年级举行跳绳比赛,要求与每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在甲、乙两班中产生,如表是这两个班的5名学生的比赛数据(单位:次)
| 1号 | 2号 | 3号 | 4号 | 5号 | 平均次数 | 方差 |
甲班 | 150 | 148 | 160 | 139 | 153 | 150 | 46.8 |
乙班 | 139 | 150 | 145 | 169 | 147 | a | 103.2 |
根据以上信息,解答下列问题:
(1)写出表中a的值和甲、乙两班的优秀率;
(2)写出两班比赛数据的中位数;
(3)你认为冠军奖应发给那个班?简要说明理由.
17.甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:
根据以上信息,整理分析数据如下:
| 平均成绩(环) | 中位数(环) | 众数(环) | 方差 |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?
18.某校为选拨参加2005年全国初中数学竞赛选手,进行了集体培训.在集训期间进行了10次测试,假设其中两位同学的测试成绩如下面的图表(如图3)所示:
(1)根据图表中的信息填写下表:
信息类别 | 平均数 | 众数 | 中位数 | 方差 |
甲 | 93 | 95 |
| 18.8 |
乙 | 90 |
| 90 | 68.8 |
(2)这两位同学的测试成绩各有什么特点(从不同的角度分别说出一条即可)?
(3)为了使参赛选手取得好成绩,应该选谁参加比赛?为什么?
19.甲进行了10次射击训练,平均成绩为9环,且前9次的成绩(单位:环)依次为:8,10,9,10,7,9,10,8,10.
(1)求甲第10次的射击成绩;
(2)求甲这10次射击成绩的方差;
(3)乙在相同情况下也进行了10次射击训练,平均成绩为9环,方差为1.6环2,请问甲和乙哪个的射击成绩更稳定?
20.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如下:
九(1)班:92,93,93,93,93,93,97,98,98,100
九(2)班:91,93,93,93,96,97,97,98,98,99
通过整理,得到数据分析表如下:
班级 | 最高分 | 平均分 | 中位数 | 众数 | 方差 |
九(1)班 | 100 | m | 93 | 93 | 7.6 |
九(2)班 | 99 | 95.5 | 96.5 | n | 6.85 |
(1)直接写出表中m、n的值;
(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由.
15.解:甲=(12+13+14+15+10+16+15+11+13+11)÷10=13,
乙=(11+17+16+13+19+14+10+16+6+8)÷10=13,
S=[(12﹣13)2+(13﹣13)2+(14﹣13)2+(15﹣13)2+(10﹣13)2+(16﹣13)2+(15﹣13)2+(11﹣13)2+(13﹣13)2+(11﹣13)2] =3.6,
S=[(11﹣13)2+(17﹣13)2+(16﹣13)2+(13﹣13)2+(19﹣13)2+(14﹣13)2+(10﹣13)2+(16﹣13)2+(6﹣13)2+(8﹣13)2] =15.8,
∵3.6<15.8,
∴甲品种出苗更整齐.
答:甲品种出苗更整齐.
16.解:(1)a=(139+150+145+169+147)÷5=150,
甲的优秀率为:3÷5×100%=60%,
乙的优秀率为:2÷5×100%=40%;
(2)甲的中位数是150,乙的中位数是147;
(3)冠军奖应发给甲班,
因为甲的优秀率高于乙,说明甲的优秀人数多,
甲的中位数大于乙的中位数,说明甲的一般水平高,
甲的方差小于乙的方差,说明甲比较稳定.
(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参赛的话,可选择乙参赛,因为乙获得高分的可能更大
(2)答案不惟一,如,甲的成绩比乙的成绩稳定等;
(3)答案不惟一,如,应该选乙.因为乙的众数比甲的众数大,乙取得高分的可能性比甲高.若选甲,则理由为平均数高于乙,方差小,比乙稳定
9×10﹣(8+10+9+10+7+9+10+8+10)=9;
(2)甲这10次射击成绩的方差为:
×[4×(10﹣9)2+3×(9﹣9)2+2×(8﹣9)2+(7﹣9)2]=1;
(3)∵平均成绩相等,而甲的方差小于乙的方差,
∴乙的射击成绩更稳定.
20.解:(1)m=(92+93+93+93+93+93+97+98+98+100)=95;
∵93出现了3次,出现的次数最多,
∴众数n是93;
(2)①九(2)班平均分高于九(1)班;
②九(2)班的成绩比九(1)班稳定;
故支持九(2)班成绩好.
青岛版八年级上册4.5 方差精品习题: 这是一份青岛版八年级上册4.5 方差精品习题,共9页。试卷主要包含了5 方差》同步练习,一组数据的方差为1,方差为2的是,4 B,某排球队6名场上队员的身高是等内容,欢迎下载使用。
初中数学青岛版八年级上册4.5 方差同步测试题: 这是一份初中数学青岛版八年级上册4.5 方差同步测试题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学青岛版八年级上册第4章 数据分析4.5 方差精品课堂检测: 这是一份初中数学青岛版八年级上册第4章 数据分析4.5 方差精品课堂检测,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。