![内蒙古包头三年(2021-2023)中考数学真题分题型分类汇编-01选择题①第1页](http://m.enxinlong.com/img-preview/2/3/14561033/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![内蒙古包头三年(2021-2023)中考数学真题分题型分类汇编-01选择题①第2页](http://m.enxinlong.com/img-preview/2/3/14561033/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![内蒙古包头三年(2021-2023)中考数学真题分题型分类汇编-01选择题①第3页](http://m.enxinlong.com/img-preview/2/3/14561033/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
内蒙古包头三年(2021-2023)中考数学真题分题型分类汇编-01选择题①
展开
这是一份内蒙古包头三年(2021-2023)中考数学真题分题型分类汇编-01选择题①,共11页。试卷主要包含了单选题等内容,欢迎下载使用。
内蒙古包头三年(2021-2023)中考数学真题分题型分类汇编-01选择题①
一、单选题
1.(2023·内蒙古·统考中考真题)下列各式计算结果为的是( )
A. B. C. D.
2.(2023·内蒙古·统考中考真题)关于的一元一次不等式的解集在数轴上的表示如图所示,则的值为( )
A.3 B.2 C.1 D.0
3.(2023·内蒙古·统考中考真题)定义新运算“”,规定:,则的运算结果为( )
A. B. C.5 D.3
4.(2023·内蒙古·统考中考真题)如图,直线,直线与直线分别相交于点,点在直线上,且.若,则的度数为( )
A. B. C. D.
5.(2023·内蒙古·统考中考真题)几个大小相同的小正方体搭成几何体的俯视图如图所示,图中小正方形中数字表示对应位置小正方体的个数,该几何体的主视图是( )
A. B. C. D.
6.(2022·内蒙古包头·中考真题)若,则m的值为( )
A.8 B.6 C.5 D.2
7.(2022·内蒙古包头·中考真题)若a,b互为相反数,c的倒数是4,则的值为( )
A. B. C. D.16
8.(2022·内蒙古包头·中考真题)若,则下列不等式中正确的是( )
A. B. C. D.
9.(2022·内蒙古包头·中考真题)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为( )
A.3 B.4 C.6 D.9
10.(2022·内蒙古包头·中考真题)2022年2月20日北京冬奥会大幕落下,中国队在冰上、雪上项目中,共斩获9金4银2铜,创造中国队冬奥会历史最好成绩某校为普及冬奥知识,开展了校内冬奥知识竞赛活动,并评出一等奖3人.现欲从小明等3名一等奖获得者中任选2名参加全市冬奥知识竞赛,则小明被选到的概率为( )
A. B. C. D.
11.(2022·内蒙古包头·中考真题)若是方程的两个实数根,则的值为( )
A.3或 B.或9 C.3或 D.或6
12.(2021·内蒙古·统考中考真题)据交通运输部报道,截至2020年底,全国共有城市新能源公交车46.61万辆,位居全球第一.将46.61万用科学记数法表示为,则n等于( )
A.6 B.5 C.4 D.3
13.(2021·内蒙古·统考中考真题)下列运算结果中,绝对值最大的是( )
A. B. C. D.
14.(2021·内蒙古·统考中考真题)已知线段,在直线AB上作线段BC,使得.若D是线段AC的中点,则线段AD的长为( )
A.1 B.3 C.1或3 D.2或3
15.(2021·内蒙古·统考中考真题)柜子里有两双不同的鞋,如果从中随机地取出2只,那么取出的鞋是同一双的概率为( )
A. B. C. D.
16.(2021·内蒙古·统考中考真题)如图,在中,,,,以点A为圆心,AC的长为半径画弧,交AB于点D,交AC于点C,以点B为圆心,AC的长为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积为( )
A. B.
C. D.
17.(2021·内蒙古·统考中考真题)若,则代数式的值为( )
A.7 B.4 C.3 D.
参考答案:
1.C
【分析】根据同底数幂的乘除法及幂的乘方运算法则即可判断.
【详解】解:A、,不符合题意;
B、,不符合题意;
C、,符合题意;
D、,不符合题意;
故选:C.
【点睛】题目主要考查同底数幂的乘除法及幂的乘方运算法则,熟练掌握运算法则是解题关键.
2.B
【分析】先求出不等式的解集,然后对比数轴求解即可.
【详解】解:解得,
由数轴得:,
解得:,
故选:B.
【点睛】题目主要考查求不等式的解集及参数,熟练掌握求不等式解集的方法是解题关键.
3.D
【分析】根据新定义的运算求解即可.
【详解】解:∵,
∴,
故选:D.
【点睛】题目主要考查新定义的运算,理解题意中的运算法则是解题关键.
4.C
【分析】由,,可得,由,可得,进而可得的度数.
【详解】解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】本题考查了等边对等角,三角形的内角和定理,平行线的性质.解题的关键在于明确角度之间的数量关系.
5.D
【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.
【详解】解:根据俯视图可知,这个几何体中:主视图有三列:左边一列1个,中间一列2个,右边一列2个,
所以该几何体的主视图是
故选:D.
【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,熟练掌握三视图的判断方法是解题关键.
6.B
【分析】根据同底数幂的乘法运算计算,即可求解.
【详解】,
,
故选:B.
【点睛】本题考查了同底数幂的乘法运算,即(m、n为正整数),熟练掌握运算法则是解题的关键.
7.C
【分析】根据a,b互为相反数,可得,c的倒数是4,可得 ,代入即可求解.
【详解】∵a,b互为相反数,
∴,
∵c的倒数是4,
∴,
∴,
故选:C
【点睛】本题考查了代数式的求值问题,利用已知求得,是解题的关键.
8.D
【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.
【详解】解:A、∵m>n,∴,故本选项不合题意;
B、∵m>n,∴,故本选项不合题意;
C、∵m>n,∴,故本选项不合题意;
D、∵m>n,∴,故本选项符合题意;
故选:D.
【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
9.B
【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;
【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,
所以这个几何体的左视图的面积为4
故选:B
【点睛】本题考查了物体的三视图,解题的关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.
10.D
【分析】根据题意,列出树状图,即可得出答案.
【详解】记小明为,其他2名一等奖为,
列树状图如下:
故有6种等可能性结果,其中小明被选中得有4种,故明被选到的概率为.
故选:D.
【点睛】此题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
11.A
【分析】结合根与系数的关系以及解出方程进行分类讨论即可得出答案.
【详解】解:∵,
∴,
,则两根为:3或-1,
当时,,
当时,,
故选:A.
【点睛】此题考查了根与系数的关系以及解二元一次方程,正确解出方程进行分类讨论是解题的关键.
12.B
【分析】把46.61万表示成科学记数法的形式,即可确定n .
【详解】46.61万=466100=4.661 ,故n=5
故选:C.
【点睛】本题考查把一个绝对值较大的数用科学记数法表示,科学记数法的形式为,其中,n为绝对值较大的数的整数数位与1的差.
13.A
【分析】计算各个选项的结果的绝对值,比较即知.
【详解】∵1+(−4)=−3,(-1)4=1,(-5)-1=,
而,,,,且
∴的绝对值最大
故选:A.
【点睛】本题考查了实数的运算、实数的绝对值等知识,掌握实数的运算法则是关键.
14.C
【分析】先分C在AB上和C在AB的延长线上两种情况,分别画出图形,然后运用中点的定义和线段的和差进行计算即可.
【详解】解:如图:当C在AB上时,AC=AB-BC=2,
∴AD=AC=1
如图:当C在AB的延长线上时,AC=AB+BC=6,
∴AD=AC=3
故选C.
【点睛】本题主要考查了线段的和差、中点的定义以及分类讨论思想,灵活运用分类讨论思想成为解答本题的关键.
15.A
【分析】画树状图,共有12个等可能的结果,取出的鞋是同一双有4个,再由概率公式求解即可.
【详解】解:设两双鞋的型号分别为:,
其中A1,A2为一双,B1,B2为一双,
画树状图如下:
共有12种等可能的结果,取出的鞋是同一双的有4种,
则取出的鞋是同一双的概率为:,
故选:A.
【点睛】本题主要考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适用于两步完成是事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
16.D
【分析】利用勾股定理可求出AC的长,根据直角三角形两锐角互余的性质可得∠A+∠B=90°,根据S阴影=S△ABC-S扇形BEF-S扇形ACD即可得答案.
【详解】∵,
∴∠A+∠B=90°,
∵,,
∴=1,
∴S阴影=S△ABC-S扇形BEF-S扇形ACD
=BC·AC-
=×1×2-
=1-,
故选:D.
【点睛】本题考查勾股定理及扇形面积,熟练掌握扇形面积公式是解题关键.
17.C
【分析】先将代数式变形为,再代入即可求解.
【详解】解:.
故选:C
【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x的值直接代入计算.
相关试卷
这是一份内蒙古包头三年(2021-2023)中考数学真题分题型分类汇编-02选择题②,共15页。试卷主要包含了单选题等内容,欢迎下载使用。
这是一份江苏徐州三年(2021-2023)中考数学真题分题型分类汇编-01选择题,共15页。试卷主要包含了单选题等内容,欢迎下载使用。
这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题②,共19页。试卷主要包含了单选题等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)