江苏无锡三年(2021-2023)中考数学真题分题型分类汇编-01选择题②
展开
这是一份江苏无锡三年(2021-2023)中考数学真题分题型分类汇编-01选择题②,共15页。试卷主要包含了单选题等内容,欢迎下载使用。
一、单选题
1.(2023·江苏无锡·统考中考真题)2020年一2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是( )
A.B.
C.D.
2.(2023·江苏无锡·统考中考真题)如图,中,,将逆时针旋转得到,交于F.当时,点D恰好落在上,此时等于( )
A.B.C.D.
3.(2023·江苏无锡·统考中考真题)下列命题:①各边相等的多边形是正多边形;②正多边形是中心对称图形;③正六边形的外接圆半径与边长相等;④正n边形共有n条对称轴.其中真命题的个数是( )
A.4B.3C.2D.1
4.(2023·江苏无锡·统考中考真题)如图,在四边形中,,,,若线段在边上运动,且,则的最小值是( )
A.B.C.D.10
5.(2023·江苏无锡·统考中考真题)如图中,,为中点,若点为直线下方一点,且与相似,则下列结论:①若,与相交于,则点不一定是的重心;②若,则的最大值为;③若,则的长为;④若,则当时,取得最大值.其中正确的为( )
A.①④B.②③C.①②④D.①③④
6.(2022·江苏无锡·统考中考真题)雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )
A.扇形B.平行四边形C.等边三角形D.矩形
7.(2022·江苏无锡·统考中考真题)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是( )
A. AE⊥DE B. AE//OD C. DE=OD D.∠BOD=50°
8.(2022·江苏无锡·统考中考真题)下列命题中,是真命题的有( )
①对角线相等且互相平分的四边形是矩形 ②对角线互相垂直的四边形是菱形
③四边相等的四边形是正方形 ④四边相等的四边形是菱形
A.①②B.①④C.②③D.③④
9.(2022·江苏无锡·统考中考真题)一次函数y=mx+n的图像与反比例函数y=的图像交于点A、B,其中点A、B的坐标为A(-,-2m)、B(m,1),则△OAB的面积( )
A.3B.C.D.
10.(2022·江苏无锡·统考中考真题)如图,在ABCD中,,,点E在AD上,,则的值是( )
A.B.C.D.
11.(2021·江苏无锡·统考中考真题)下列图形中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
12.(2021·江苏无锡·统考中考真题)如图,D、E、F分别是各边中点,则以下说法错误的是( )
A.和的面积相等
B.四边形是平行四边形
C.若,则四边形是菱形
D.若,则四边形是矩形
13.(2021·江苏无锡·统考中考真题)在中,,,,点P是所在平面内一点,则取得最小值时,下列结论正确的是( )
A.点P是三边垂直平分线的交点B.点P是三条内角平分线的交点
C.点P是三条高的交点D.点P是三条中线的交点
14.(2021·江苏无锡·统考中考真题)设,分别是函数,图象上的点,当时,总有恒成立,则称函数,在上是“逼近函数”,为“逼近区间”.则下列结论:
①函数,在上是“逼近函数”;
②函数,在上是“逼近函数”;
③是函数,的“逼近区间”;
④是函数,的“逼近区间”.
其中,正确的有( )
A.②③B.①④C.①③D.②④
15.(2021·江苏无锡·统考中考真题)一次函数的图象与x轴交于点B,与反比例函数的图象交于点,且的面积为1,则m的值是( )
A.1B.2C.3D.4
参考答案:
1.A
【分析】根据2020年的人均可支配收入和2022年的人均可支配收入,列出一元二次方程即可.
【详解】解:由题意得:.
故选:A.
【点睛】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
2.B
【分析】根据旋转可得,再结合旋转角即可求解.
【详解】解:由旋转性质可得:,,
∵,
∴,,
∴,
故选:B.
【点睛】本题考查了几何—旋转问题,掌握旋转的性质是关键.
3.C
【分析】根据正多边形的性质以及正多边形与圆的关系逐一进行判断即可.
【详解】解:各边相等各角相等的多边形是正多边形,只有各边相等的多边形不一定是正多边形,如菱形,故①是假命题;
正三角形和正五边形就不是中心对称图形,故②为假命题;
正六边形中由外接圆半径与边长可构成等边三角形,所以外接圆半径与边长相等,故③为真命题;
根据轴对称图形的定义和正多边形的特点,可知正n边形共有n条对称轴,故④为真命题.
故选:C.
【点睛】本题考查的是正多边形的概念以及正多边形与圆的关系,属于基础题型.
4.B
【分析】过点C作,过点B作,需使最小,显然要使得和越小越好,则点F在线段的之间,设,则,求得关于x的二次函数,利用二次函数的性质即可求解.
【详解】解:过点C作,
∵,,
∴,
过点B作,
∵,
∴四边形是矩形,
∴,
需使最小,显然要使得和越小越好,
∴显然点F在线段的之间,
设,则,
∴,
∴当时取得最小值为.
故选:B.
【点睛】本题考查了二次函数应用,矩形的判定和性质,解直角三角形,利用二次函数的性质是解题的关键.
5.A
【分析】①有3种情况,分别画出图形,得出的重心,即可求解;当,时,取得最大值,进而根据已知数据,结合勾股定理,求得的长,即可求解;③如图5,若,,根据相似三角形的性质求得,,,进而求得,即可求解;④如图6,根据相似三角形的性质得出,在中,,根据二次函数的性质,即可求取得最大值时,.
【详解】①有3种情况,如图,和都是中线,点是重心;
如图,四边形是平行四边形,是中点,点是重心;
如图,点不是中点,所以点不是重心;
①正确
②当,如图时最大,,
,,,
,
,
②错误;
③如图5,若,,
∴,,,,,,,
∴,,,
∴,,
∴,
∴③错误;
④如图6,,
∴,
即,
在中,,
∴,
∴,
当时,最大为5,
∴④正确.
故选:C.
【点睛】本题考查了三角形重心的定义,勾股定理,相似三角形的性质,二次函数的性质,分类讨论,画出图形是解题的关键.
6.B
【分析】根据轴对称图形与中心对称图形的概念求解.
【详解】解:A、扇形是轴对称图形,不是中心对称图形,故此选项不合题意;
B、平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;
C、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;
D、矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;
故选:B.
【点睛】此题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心是解题关键.
7.C
【分析】过点D作DF⊥AB于点F,根据切线的性质得到OD⊥DE,证明OD∥AE,根据平行线的性质以及角平分线的性质逐一判断即可.
【详解】解:∵DE是⊙O的切线,
∴OD⊥DE,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠OAD=∠EAD,
∴∠EAD=∠ODA,
∴OD∥AE,
∴AE⊥DE.故选项A、B都正确;
∵∠OAD=∠EAD=∠ODA=25°,∠EAD=25°,
∴∠BOD=∠OAD+∠ODA=50°,故选项D正确;
∵AD平分∠BAC,AE⊥DE,DF⊥AB,
∴DE=DF
相关试卷
这是一份江苏徐州三年(2021-2023)中考数学真题分题型分类汇编-01选择题,共15页。试卷主要包含了单选题等内容,欢迎下载使用。
这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题②,共19页。试卷主要包含了单选题等内容,欢迎下载使用。
这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题①,共9页。试卷主要包含了单选题等内容,欢迎下载使用。