山西省朔州市2022-2023学年八年级下学期7月期末数学试题(含答案)
展开
这是一份山西省朔州市2022-2023学年八年级下学期7月期末数学试题(含答案),共14页。试卷主要包含了本试卷分第I卷和第II卷两部分,考试结束后将答题卡交回,5秒等内容,欢迎下载使用。
2022~2023学年度下学期期末八年级学情调研测试题数学注意事项:1.本试卷分第I卷和第II卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答题全部在答题卡上完成,答在本试卷上无效.4.考试结束后将答题卡交回.第I卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.)1.二次根式中,的取值范围是( )A. B. C. D.2.某学校新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是( )A.众数 B.中位数 C.方差 D.平均数3.下列二次根式中,最简二次根式是( )A. B. C. D.4.对于函数,下列结论正确的是( )A.它的图象必经过点 B.它的图象经过第一、二、三象限C.当时, D.的值随值的增大而增大5.如图学校门口的伸缩门在伸缩的过程中,会出现不少菱形.某一时刻,测得菱形的对角线,,则这个菱形的面积为( )A. B. C. D.6.甲,乙两人在一次百米赛跑中,路程与时间的关系如图所示,下列说法正确的是( )A.乙先到达终点 B.甲比乙晩到0.5秒C.甲在这次赛跑中的平均速度为8米/秒 D.乙在这次赛跑中的平均速度为8米/秒7.如图,是四边形的对角线,,,则四边形的面积等于( )A. B. C. D.8.如图,中,为边上一点,为边上一点,四边形为矩形,若,,则的度数是( )A. B. C. D.9.如图,在中,,点分别是边,的中点,点是线段上的一点.连接,,若,且,,则的长是( )A. B.1 C. D.210.如图,在平面直角坐标系中,矩形的点和点分别落在轴和轴正半轴上,,直线经过点,将直线向下平移个单位,若直线可将矩形的面积平分,则的值为( )A.11 B.9 C.6 D.5第II卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分.)11.已知长方形的面积为,相邻两边分别为,已知,则的长为______.12.学校为提升教职工的身体素质,开展了“放飞心情,健行健康”为主题的健步走活动,李老师用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步)1.11.21.31.41.5天数2310123在每天所走的步数这组数据中,众数是______万步.13.如图,每个小正方形的边长为,的顶点都在小正方形的顶点上,其中最长边等于______.14.如图,一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加.根据小球速度(单位:)关于时间(单位:)的函数关系,第时小球的速度为______15.如图,在中,,,点在边上,于点,交于点.若,则的长为______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(每小题5分,共10分)(1)计算:(2)计算:.17.(本题7分)如图,四边形中,,,点是的中点,.求证:四边形是菱形.18.(本题8分)根据山西省教育厅“2023年度基础教育领域重点工作推进会”要求,扎实推进建设100所公办幼儿园任务落实,某地计划要在如图所示的直线上,新建一所幼儿园,该区域有两个小区所在的位置在点和点处,于A,于B.已知,,求该幼儿园应该建在距点为多少处,可以使两个小区到幼儿园的距离相等.19.(本题8分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子是我省杂粮谷物中的大类.某小米经销商要将规格相同的1000袋小米运往A,B,C三地销售,要求运往C地的袋数是运往A地袋数的3倍,各地的运费如下表所示:运往地地地地运费(元/袋)201015(1)设运往地的小米(袋),总运费为(元),试写出与的函数关系式;(2)若总运费不超过15000元,最多可运往A地小米多少袋?20.(本题9分)学校举办纪念“五四运动”104周年暨“青春心向党,建功新时代”演讲比赛.同学们用青春的声音和故事,激扬五四精神,彰显青春风采,展现拼搏风貌,深情地演绎了对党和祖国的热爱之情.初赛阶段两个年级各10名选手的成绩统计如下:七年级:98 96 86 85 84 94 77 69 59 94八年级:99 96 73 82 96 79 65 96 55 96他们的数据分析过程如下:(1)整理、描述数据:根据上面得到的两组数据,分别绘制频数分布直方图如图:请补全八年级频数分布直方图;(2)数据分析:两组数据的平均数、中位数、方差如表所示:年级平均数中位数方差七年级①85.5144.36八年级83.7②251.21根据以上数据求出表格中①,②两处的数据;(3)推断结论:根据以上信息,判断哪个年级比赛成绩整体较好?说明理由(至少从两个不同角度说明判断的合理性).21.(本题8分)请阅读下列材料,并完成相应的任务:运用“坐标法”解决几何问题数学知识之间是相互联系的,有些几何问题可以运用“坐标法”解决.其步骤是:首先根据图形特点,在平面上建立坐标系,然后运用函数(或方程)知识研究几何图形,最后把图形性质用几何语言叙述,从而得到原先几何问题的答案.例题(2021年山西中考)如图,在中,,是的角平分线,,,用你所学的知识求线段的长.解:如图,以为坐标原点,所在的直线为轴,建立平面直角坐标系.∵,是的角平分线,∴.∴∵,,∴,,,.∴,设直线的函数表达式为.∴解得.∴∴当时,.∴线段的长为3.通过这个问题的解答,我们发现用“坐标法”解决几何问题,关键是根据图形特点,建立适当的坐标系.任务:请用“坐标法”解答下面问题:如图,已知正方形中,,点在的延长线上,且,连接,相交于点,连接交于点,求的长.22.(本题12分)综合与实践:操作发现:如图1,在纸片中,,于点.第一步:将一张与其全等的纸片,沿剪开;第二步:在同一平面内,将所得的两个三角形,和拼在一起.如图2所示,这两个三角形分别记为和;第三步:分别延长和相交于点.(1)求证:四边形是正方形;拓广探索:(2)如图3,连接分别交,于点,在四边形外作,使得,,判断线段,,之间的数量关系,并说明理由.23.(本题13分)如图,在平面直角坐标系中,点,点为正方形的两个顶点,点和在第一象限.(1)求点的坐标;(2)求直线的函数表达式;(3)在直线上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,说明理由.2022-2023学年度第二学期期末八年级学情调研测试题数学参考答案与评分标准一、选择题:题号12345678910答案ABBCCDADBA二、填空题: 11. 12.1.4 13. 14.9 15.1三、解答题:16.解:(1)原式=···········································4分 =.···················································5分(2)原式=··················································8分 =······················································9分 =.·····················································10分17.证明:∵,E是BC中点,∴.························································2分∵,.∴四边形ADCE是平行四边形.····································5分又.∴四边形ADCE是菱形.·········································7分18.解:由题意,设,则.······································1分在中∵,∴.························································2分在中,∵,∴.························································3分∵,∴.························································4分∴.························································5分解得.······················································7分答:该幼儿园E应该建在距点A为1km处,可以使两个小区到幼儿园的距离相等.19. 解:(1)根据题意,得.···································3分.··························································4分(2)∵,∴,························································6分解得.······················································7分∴总运费不超过15000元,最多可运往A地小米200袋.··················8分20.解:(1)请补全八年级频数分布直方图: (2)表格中①对应的数据为:.···························································4分表格中②对应的数据是.········································6分(3)七年级比赛成绩整体较好.··································7分理由:七年级成绩的平均数大于八年级,说明七年级的平均成绩好于八年级;七年级成绩的方差小于八年级,说明七年级同学的成绩波动小,故七年级比赛成绩整体较好. 9分21.(方法不唯一,例如)解:以O为坐标原点,垂直AB的直线为x轴,垂直AD的直线为y轴,建立直角坐标系,如图. 1分∵正方形ABCD的边长为8, ,∴E(8,-4).···························2分设直线OE解析式为.························3分将E(8,-4)代入,得8k=-4,解得.···································5分∴直线OE的函数表达式为.···················6分令得,∴H(4,-2).······················7分∴22.(1)证明:根据剪拼过程,可知,,,····························································1分∵,∴.························································2分∴.························································3分∴四边形AEGF是矩形.·········································4分∵,∴四边形AEGF是正方形;·······································5分(2).······················································6分理由:连接NH,∵由(1)可得四边形AEGF是正方形∴,,.在△AFH和△AEM中,∴.·································8分∴.∴. ·······················································9分∴. ·······················································10分∵,∴.∵,,,∴.在△AMN和△AHN中,∴.························································11分∴.∴.23.解:(1)过D作轴于点E,∵四边形ABCD是正方形,∴,.·····························1分∴.又∵,∴.······························2分∵,∴.······························3分在△DAE和△ABO中,∴.························································4分∴,.∴.∴D(4,7).················································5分(2)过点C作轴于点F,同上可证得. ∴,.∴.∴C(7,3).················································6分设直线BC的函数表达式为 (,k,b为常数).代入B(3,0),C(7,3),得 解方程组,得·················································8分∴.························································9分(3)在直线BC上存在点P,使△PCD为等腰三角形. 点P的坐标为(3,0)或(11,6).
相关试卷
这是一份山西省朔州市2022-2023学年八年级上学期期末测试数学试卷(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省朔州市2022-2023学年八年级下学期期末数学试卷(含答案),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省朔州市2022-2023学年八年级上学期期末数学试题,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。