所属成套资源:新人教版初中数学八年级下册(春季班)讲义练习
人教版八年级下册数学讲义练习 第20章 章末检测
展开
这是一份人教版八年级下册数学讲义练习 第20章 章末检测,共13页。
新人教版初中数学学科教材分析数学是一门研究数量关系和空间形式的科学,具有严密的符号体系,独特的公式结构,形象的图像语言。它有三个显著的特点:高度抽象,逻辑严密,广泛应用。 1.高度抽象性:数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来并借助于抽象发展的。2.严密逻辑性: 数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。任何一门科学,都要应用逻辑工具,都有它严谨的一面。3.广泛应用性:数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。 第20章 数据分析初步 章末检测(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在一次射击练习中,某运动员命中的环数是其中是( )A.平均数 B.中位数 C.众数 D.既是平均数又是中位数、众数2.甲、乙两名学生进行射击练习,两人在相同条件下各射击5次,射击成绩统计如下:命中环数(单位:环) 7 8 9 10 甲命中相应环数的次数 2 2 0 1 乙命中相应环数的次数 1 3 1 0 从射击成绩的平均数评价甲、乙两人的射击水平,则( )A.甲比乙高 B.甲、乙相同 C.乙比甲高 D.不能确定3.对于数据3,3,2,3,6,3,10,3,6,3,2,(1)这组数据的众数是3,(2)这组数据的众数与中位数的数值不等,(3)这组数据的中位数与平均数的数值相等,(4)这组数据的平均数与众数的数值相等.其中正确结论的个数为( )A.1 B.2 C.3 D.44.综合实践活动中,同学们做泥塑工艺制作.小明将活动组各同学的作品完成情况绘成了下面的条形统计图.根据图表,我们可以知道平均每个学生完成作品( )件.A.12 B.8.625 C.8.5 D.9 5.某公司员工的月工资如下表: 员工经理副经理职员职员职员职员职员职员职员月工资/元4 8003 5002 0001 9001 8001 6001 6001 6001 000则这组数据的平均数众数中位数分别为( )A. B. C. D.6.下列说法中正确的有( )①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数.A.1个 B.2个 C.3个 D.4个7.某同学在本学期的前四次数学测验中得分依次是95、82、76、88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得( )分.A.84 B.75 C.82 D.878.样本方差的计算公式中,数字20和30分别表示样本的( )A.众数、中位数 B.方差、标准差[来源:学科网ZXXK]C.数据的个数、平均数 D.数据的个数、中位数9.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出的平均数与实际平均数的差是( )A.3.5 B.3 C.0.5 D.-310.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下: 对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )A. 乙运动员的成绩比甲运动员的成绩稳定B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定二、填空题(本大题共10小题,每小题3分,共30分)11.某校八年级(1)班一次数学考试的成绩为:分的3人,分的人,分的17人,分的人,分的人,分的人,全班数学考试的平均成绩为_______分.12.在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分.13.一组数据它们的中位数是,则______.14.有个数由小到大依次排列,其平均数是,如果这组数的前个数的平均数是,后个数的平均数是,则这个数的中位数是_______.15.若已知数据的平均数为,那么数据的平均数(用含的表达式表示)为_______.16.某超市招聘收银员一名,对三名应聘者进行了三项素质测试.下面是三名应聘者的素质测试成绩:素质测试[来源:Zxxk.Com]测试成绩[来源:学#科#网Z#X#X#K][来源:学科网][来源:学#科#网Z#X#X#K]小李小张小赵计 算 机709065商品知识507555语 言803580 公司根据实际需要, 对计算机、商品知识、语言三项测试成绩分别赋予权重4、3、2,则这三人中 将被录用.17.已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为_____________,标准差为__________.18.自然数4、5、5、x、y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x、y中,x+y的最大值是___.19.已知数据x1,x2,…,xn的方差是2,则3x1﹣2,3x2﹣2,…,3xn﹣2的方差为____. 20.某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:班级参加人数平均字数中位数方差甲55135149191乙55135151110有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.(6分) 某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数如下: 加工零件数540450300240210120人数112632 (1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么?22.(6分)为调查八年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数.(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?23.(6分)小洁在某超市购买了3盒1升装的牛奶,每盒5.80元,另外又买了12盒250毫升装的牛奶,每盒1.50元,那么她平均每盒花费了(元),对吗?如果不对的话,请给出正确的结果.24.甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如右图所示.根据图中信息,回答下列问题:(1)甲的平均数是___,乙的中位数是_____.(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定? 25.(7分)某校在一次数学检测中,八年级甲、乙两班学生的数学成绩统计如下表:分数5060708090100人数甲班161211155乙班351531311请根据表中提供的信息回答下列问题:(1)甲班的众数是多少分,乙班的众数是多少分,从众数看成绩较好的是哪个班?(2)甲班的中位数是多少分,乙班的中位数是多少分,甲班成绩在中位数以上(包括中位数)的学生所占的百分比是多少;乙班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,从中位数看成绩较好的是哪个班?(3)甲班的平均成绩是多少分,乙班的平均成绩是多少分,从平均成绩看成绩较好的班是哪个班?26.(7分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩(分)甲乙丙笔试758090面试937068 根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分.(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么谁将被录用? 27.(7分)一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩有如下信息: ABCDE平均分标准差数学7172696870 英语888294857685 (1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的标准差.(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?28.(7分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个): 1号2号3号4号5号总数甲班891009611897500乙班1009511091104500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率.(2)求两班比赛成绩的中位数.(3)估计两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.
1.D 解析:将数据按从小到大的顺序排列为所以中位数是;数据和都出现了两次,出现次数最多,所以众数是;平均数为.所以此题中既是平均数又是中位数、众数.2.B 解析:由题意知,甲的平均数为乙的平均数为所以从平均数看两人相同,故选B.3.A 解析:将这组数据从小到大排列为:2,2,3,3,3,3,3,3,6,6,10,共11个数,所以第6个数据是中位数,即中位数为3.数据3的个数为6,所以众数为3.平均数为,由此可知(1)正确,(2)、(3)、(4)均错误,故选A.4.B 解析: (件).5.C 解析:元出现了次,出现的次数最多,所以这组数据的众数为元;将这组数据按从大到小的顺序排列,中间的(第5个)数是元,故其中位数为元;,故平均数为2 200元,选C.6.B 解析:一组数据的中位数和平均数只有一个,但出现次数最多的数即众数,可以有多个,所以①②对,③错;由于一组数据的平均数是取各数的平均值,中位数一般是将原数据按大小排列后,进行计算得来的,所以平均数与中位数不一定是原数据里的数,故④错;一组数据中的一个数大小发生了变化,它的平均数一定发生变化,众数、中位数也可能发生改变,也可能不发生改变,所以⑤错.7.A 解析:利用求平均数的公式.设第五次测验得分,则,解得.8.C9.D 解析:设其他29个数据的和为,则实际的平均数为,而所求出的平均数为,故.10.D11.78.8 解析:12.71 解析:13. 解析:将除外的五个数从小到大重新排列后为中间的数是,由于中位数是,所以应在20和23中间,且,解得.14. 解析:设中间的一个数即中位数为,则,所以中位数为.15. 解析:设的平均数为,则,又因为=,于是.16.小张 解析:∵ 小李的成绩是:,小张的成绩是:,小赵的成绩是:,∴ 小张被录用.17.2, 解析:根据方差和标准差的定义进行求解.18.【答案】5即x+y的最大值=2+3=5,故答案为5.19.【答案】18【解析】解:∵数据x1,x2,…,xn的方差是2,∴3x1,3x2,…,3xn的方差是32×2=18,∴3x1﹣2,3x2﹣2,…,3xn﹣2的方差为18;[来源:学科网]故答案为:18. 20. ①②③ 解析:由于乙班学生每分钟输入汉字的平均数为135,中位数为151,说明有一半以上的学生都达到每分钟150个以上,而甲班学生的中位数为149,说明不到一半的学生达到150个以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.21.解:(1)平均数:中位数:240件,众数:240件.
(2)不合理,因为表中数据显示,每月能完成件以上的一共是4人,还有11人不能达到此定额,尽管是平均数,但不利于调动多数员工的积极性.因为既是中位数,又是众数,是大多数人能达到的定额,故定额为件较为合理.22.解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40,43,55,55,55,60,65,75,其中最中间的两个数据都是55,即这组数据的中位数是55.(2)这8个数据的平均数是,所以这8名学生完成家庭作业的平均时间为.因为,所以估计该班学生每天完成家庭作业的平均时间符合学校的要求.23.解:不正确.平均数是所有数的和除以所有个数的结果. 因为两种牛奶购买的盒数不同,所以结果不正确.应为(元).24.【答案】见解析(2)乙的平均数= (7×5+8+9×3+10)=8,S甲2×[(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+(9﹣8)2+2×(10﹣8)2]=1.6,S乙2×[5×(7﹣8)2+(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.2,∵S乙2<S甲2,∴乙运动员的射击成绩更稳定.25.解:(1)甲班中分出现的次数最多,故甲班的众数是分;乙班中分出现的次数最多,故乙班的众数是分.从众数看,甲班成绩好.
(2)两个班都是人,甲班中的第人的分数是分,故甲班的中位数是分;乙班中的第人的分数是分,故乙班的中位数是分.甲班成绩在中位数以上(包括中位数)的学生所占的百分比为;乙班成绩在中位数以上(包括中位数)的学生所占的百分比为.从中位数看成绩较好的是甲班.(3)甲班的平均成绩为;乙班的平均成绩为.从平均成绩看成绩较好的是乙班.26.分析:通过阅读表格获取信息,再根据题目要求进行平均数与加权平均数的计算.解:(1)甲、乙、丙的民主评议得分分别为:50分、80分、70分.(2)甲的平均成绩为:(分),乙的平均成绩为:(分),丙的平均成绩为:(分).由于,所以乙将被录用.(3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么甲的个人成绩为:(分),乙的个人成绩为:(分),丙的个人成绩为:(分),由于丙的个人成绩最高,所以丙将被录用.27.解:(1)数学成绩的平均分为(分),英语成绩的方差为,故标准差为6.(2)A同学数学成绩的标准分是; 英语成绩的标准分是.可以看出数学成绩的标准分高于英语成绩的标准分,所以A同学的数学成绩要比英语成绩考得好.28.解:(1)甲班的优秀率:,乙班的优秀率:.
(2)甲班5名学生比赛成绩的中位数是97个;乙班5名学生比赛成绩的中位数是100个.(3)甲班的平均数=(个),甲班的方差;乙班的平均数=(个),乙班的方差.∴ .(4)乙班定为冠军.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好.