![数学八年级下册第17章 勾股定理 专项训练2(含答案)第1页](http://m.enxinlong.com/img-preview/2/3/14179464/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学八年级下册第17章 勾股定理 专项训练2(含答案)第2页](http://m.enxinlong.com/img-preview/2/3/14179464/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学八年级下册第17章 勾股定理 专项训练2(含答案)第3页](http://m.enxinlong.com/img-preview/2/3/14179464/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版八年级下册17.1 勾股定理课后作业题
展开
这是一份人教版八年级下册17.1 勾股定理课后作业题,共8页。试卷主要包含了证垂直在解题中的应用,全章热门考点整合应用等内容,欢迎下载使用。
第17章 勾股定理 专项训练专训1.证垂直在解题中的应用名师点金:证垂直的方法:(1)在同一平面内,垂直于两条平行线中的一条直线;(2)等腰三角形中“三线合一”;(3)勾股定理的逆定理:在几何中,我们常常通过证垂直,再利用垂直的性质来解各相关问题. 利用三边的数量关系说明直角1.如图,在△ABC中,点D为BC边上一点,且AB=10,BD=6,AD=8,AC=17,求CD的长.(第1题) 利用转化为三角形法构造直角三角形2.如图,在四边形ABCD中,∠B=90°,AB=2,BC=,CD=5,AD=4,求S四边形ABCD.(第2题) 利用倍长中线法构造直角三角形3.如图,在△ABC中,D为边BC的中点,AB=5,AD=6,AC=13,求证:AB⊥AD.(第3题) 利用化分散为集中法构造直角三角形4.在△ABC中,CA=CB,∠ACB=α,点P为△ABC内一点,将CP绕点C顺时针旋转α得到CD,连接AD.(1)如图①,当α=60°,PA=10,PB=6,PC=8时,求∠BPC的度数;(2)如图②,当α=90°时,PA=3,PB=1,PC=2时,求∠BPC的度数.(第4题) 利用“三线合一”法构造直角三角形5.如图①,在△ABC中,CA=CB,∠ACB=90°,D为AB的中点,M,N分别为AC,BC上的点,且DM⊥DN.(1)求证:CM+CN=BD;(2)如图②,若M,N分别在AC,CB的延长线上,探究CM,CN,BD之间的数量关系.(第5题) 专训2.全章热门考点整合应用名师点金:本章主要学习了勾股定理、勾股定理的逆定理及其应用,勾股定理揭示了直角三角形三边长之间的数量关系.它把直角三角形的“形”的特点转化为三边长的“数”的关系,是数形结合的典范,是直角三角形的重要性质之一,也是今后学习直角三角形的依据之一.本章的考点可概括为:两个概念,两个定理,两个应用. 两个概念a.互逆命题1.有下列命题:①直角都相等;②内错角相等,两直线平行;③如果a+b>0,那么a>0,b>0;④相等的角都是直角;⑤如果a>0,b>0,那么ab>0;⑥两直线平行,内错角相等.(1)③和⑤是互逆命题吗?(2)你能说出③和⑤的逆命题各是什么吗?(3)请指出哪几个命题是互逆命题. b.互逆定理2.下列四个定理中,存在逆定理的有( )个.(1)有两个角相等的三角形是等腰三角形;(2)全等三角形的对应角相等;(3)同位角相等,两直线平行.A.0 B.1 C.2 D.33.写出下列各命题的逆命题,并判断是不是互逆定理.(1)全等三角形的对应边相等;(2)同角的补角相等. 两个定理a.勾股定理4.如图,在Rt△ABC中,∠C=90°,点D是BC上一点,AD=BD.若AB=8,BD=5,求CD的长.(第4题) b.勾股定理的逆定理5.在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为________三角形;当△ABC三边长分别为6,8,11时,△ABC为________三角形.(2)小明同学根据上述探究,有下面的猜想:“当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c在什么范围内取值时,△ABC是锐角三角形、直角三角形、钝角三角形? 两个应用a.勾股定理的应用6.如图,在公路l旁有一块山地正在开发,现需要在C处爆破.已知C与公路上的停靠站A的距离为300 m,与公路上的另一停靠站B的距离为400 m,且CA⊥CB.为了安全起见,爆破点C周围半径250 m范围内(包括250 m)不得有人进入.问:在进行爆破时,公路AB段是否有危险?需要暂时封锁吗?(第6题) b.勾股定理逆定理的应用7.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距5 n mile的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行40 n mile,乙巡逻艇每小时航行30 n mile,航向为北偏西37°,问:甲巡逻艇的航向?(第7题) 答案 专训11.解:∵AD2+BD2=100=AB2,∴△ABD为直角三角形,且∠ADB=90°.在Rt△ACD中,CD2+AD2=AC2,∴CD===15.2.解:连接AC.在Rt△ACB中,AB2+BC2=AC2,∴AC=3,∴AC2+AD2=CD2.∴△ACD为直角三角形,且∠CAD=90°,∴S四边形ABCD=×2×+×3×4=6+.(第3题)3.证明:如图,延长AD至点E,使DE=AD,连接CE,BE.∵D为BC的中点,∴CD=BD.又∵AD=DE,∠ADC=∠BDE,∴△ADC≌△EDB,∴BE=AC=13.在△ABE中,AE=2AD=12,∴AE2+AB2=122+52=169.又∵BE2=132=169,∴AE2+AB2=BE2,∴△ABE是直角三角形,且∠BAE=90°,即AB⊥AD.点拨:本题运用倍长中线法构造全等三角形证明线段相等,再利用勾股定理的逆定理证明三角形为直角三角形,从而说明两条线段垂直.4.解:(1)如图①,连接DP,易知△DCP为等边三角形,易证得△CPB≌△CDA,∴∠BPC=∠ADC,∠CDP=60°,AD=6,DP=8,∴AD2+DP2=AP2,∴∠ADP=90°,∴∠ADC=150°,∴∠BPC=150°.(第4题) (2)如图②,连接DP,易得△DCP为等腰直角三角形,易证得△CPB≌△CDA,∴∠BPC=∠ADC,∠CDP=45°,AD=1,DP=CD=2,∴AD2+DP2=AP2,∴∠ADP=90°,∴∠ADC=135°,∴∠BPC=135°.5.(1)证明:如图①,连接CD,∵DM⊥DN,∴∠MDC+∠CDN=90°.∵∠ACB=90°,AC=CB,D为AB的中点,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CDN+∠NDB=90°.∴∠MDC=∠NDB.∵CD⊥AB,∠BCD=45°,∴CD=BD.在△CMD和△BND中,∵∠MDC=∠NDB,∠MCD=∠NBD,CD=BD,∴△CMD≌△BND,∴CM=BN.∴CM+CN=BN+CN=BC.在Rt△CBD中,∠B=45°,∠CDB=90°,∴BC=BD.∴CM+CN=BD.(2)解:CN-CM=BD,如图②,连接CD,证法同(1).(第5题) 专训二1.解:(1)由于③的题设是a+b>0,而⑤的结论是ab>0,故⑤不是由③交换命题的题设和结论得到的,所以③和⑤不是互逆命题.(2)能.③的逆命题是如果a>0,b>0,那么a+b>0.⑤的逆命题是如果ab>0,那么a>0,b>0.(3)①与④,②与⑥分别是互逆命题.2.C3.解:(1)逆命题:三条边对应相等的两个三角形全等.原命题与其逆命题都是真命题且都是定理,所以它们是互逆定理.(2)逆命题:如果两个角相等,那么这两个角是同一个角的补角.原命题是真命题,但其逆命题是假命题,所以它们不是互逆定理.4.解:设CD=x,在Rt△ABC中,有AC2+(CD+BD)2=AB2,整理,得AC2=AB2-(CD+BD)2=64-(x+5)2.①在Rt△ADC中,有AC2+CD2=AD2,整理,得AC2=AD2-CD2=25-x2.②由①②两式,得64-(x+5)2=25-x2,解得x=1.4,即CD的长是1.4.点拨:勾股定理反映了直角三角形三边长之间的数量关系,利用勾股定理列方程思路清晰、直观易懂.5.解:(1)锐角;钝角(2)a2+b2=22+42=20,∵c为最长边,2+4=6,∴4≤c<6.①由a2+b2>c2,得c2<20,0<c<2,∴当4≤c<2时,这个三角形是锐角三角形;②由a2+b2=c2,得c2=20,c=2,∴当c=2时,这个三角形是直角三角形;③由a2+b2<c2,得c2>20,c>2,∴当2<c<6时,这个三角形是钝角三角形.6.思路导引:要判断公路AB段是否需要暂时封锁,只需要判断点C到公路l的距离是否大于250 m.若大于250 m,则不需要暂时封锁;若小于或等于250 m,则需要暂时封锁.解:如图,过点C作CD⊥AB于点D.在Rt△ABC中,因为BC2+AC2=AB2,BC=400 m,AC=300 m,(第6题)所以AB2=4002+3002=5002,所以AB=500 m.因为SRt△ABC=AB·CD=BC·AC, 所以500×CD=400×300,所以CD=240 m.因为240<250,所以公路AB段有危险,需要暂时封锁.7.解:AC=40×0.1=4(n mile),BC=30×0.1=3(n mile).因为AB=5 n mile,所以AB2=BC2+AC2,所以∠ACB=90°.因为∠CBA=90°-37°=53°,所以∠CAB=37°,所以甲巡逻艇的航向为北偏东53°.
相关试卷
这是一份中考数学专项训练(13)勾股定理证明含解析答案,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版八年级下册17.1 勾股定理同步练习题,共15页。试卷主要包含了巧用勾股定理求最短路径的长,6),巧用勾股定理解折叠问题,利用勾股定理解题的7种常见题型,求BC的长.等内容,欢迎下载使用。
这是一份初中数学16.1 二次根式课后测评,共7页。试卷主要包含了常见二次根式化简求值的九种技巧,[提示,二次根式运算常见的题型等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)