所属成套资源:2022-2023学年高二数学下学期期中期末考点大串讲(人教A版2019)
- 专题03 排列与组合(知识串讲 热考题型 专题训练)-2022-2023学年高二数学下学期期中期末考点大串讲(人教A版2019) 试卷 2 次下载
- 专题04 二项式定理-2022-2023学年高二数学下学期期中期末考点大串讲(人教A版2019) 试卷 2 次下载
- 专题05 条件概率(知识串讲 热考题型 专题训练)-2022-2023学年高二数学下学期期中期末考点大串讲(人教A版2019) 试卷 2 次下载
- 高二下学期期中数学考试模拟卷01-2022-2023学年高二数学下学期期中期末考点大串讲(人教A版2019) 试卷 5 次下载
- 高二下学期期中数学考试模拟卷02-2022-2023学年高二数学下学期期中期末考点大串讲(人教A版2019) 试卷 3 次下载
专题06 离散型随机变量的期望与方差(知识串讲 热考题型 专题训练)-2022-2023学年高二数学下学期期中期末考点大串讲(人教A版2019)
展开
这是一份专题06 离散型随机变量的期望与方差(知识串讲 热考题型 专题训练)-2022-2023学年高二数学下学期期中期末考点大串讲(人教A版2019),文件包含专题06离散型随机变量的期望与方差解析版docx、专题06离散型随机变量的期望与方差原卷版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
专题06 离散型随机变量的数字特征
知识点1 离散型随机变量的分布列
1.对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.可能取值为有限个或可以一一列举的随机变量叫做离散型随机变量.
2.一般地,设离散型随机变量X的可能取值为x1,x2,…,xn,称X取每一个值xi的概率P(X=xi)=pi(i=1,2,…,n)为X的概率分布列,简称分布列.
X
x1
x2
…
xn
P
p1
p2
…
pn
离散型随机变量的分布列也可以用如上表格表示.且具有如下性质:
(1)pi≥0,i=1,2,…,n;
(2)p1+p2+…+pn=1.
离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.
知识点2 超几何分布
一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为
其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.
【注意】超几何分布中的随机变量为抽到的某类个体的个数.主要特征为:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.
知识点3 离散型随机变量的数字特征
(1)均值
一般地,若离散型随机变量X的分布列为
X
x1
x2
…
xn
P
p1
p2
…
pn
则称E(X)=x1p1+x2p2+…+xipi+…+xnpn =为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.
(2)方差
设离散型随机变量X的分布列为
X
x1
x2
…
xn
P
p1
p2
…
pn
则(xi-E(X))2描述了xi(i=1,2,…,n)相对于均值E(X)的偏离程度.而为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.称D(X)为随机变量X的方差,有时也记为Var(X),并称为随机变量X的标准差,记为σ(X).
【注意】 (1)随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度越大,表明平均偏离程度越大,X的取值越分散.反之,越小,X的取值越集中在附近;(2)方差也是一个常数,它不具有随机性,方差的值一定是非负实数.
知识点4 二项分布
(1)一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0
相关试卷
这是一份专题13 概率综合(知识串讲+热考题型+专题训练)-2023-2024学年高一数学下学期期中期末考点大串讲(人教A版2019必修第二册),文件包含专题13概率综合原卷版docx、专题13概率综合解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份专题12 统计综合(知识串讲+热考题型+专题训练)-2023-2024学年高一数学下学期期中期末考点大串讲(人教A版2019必修第二册),文件包含专题12统计综合原卷版docx、专题12统计综合解析版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。
这是一份专题05 条件概率(知识串讲 热考题型 专题训练)-2022-2023学年高二数学下学期期中期末考点大串讲(人教A版2019),文件包含专题05条件概率解析版docx、专题05条件概率原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。