


所属成套资源:全套统考版高考数学(文)复习课时学案
统考版高中数学(文)复习1-3简单的逻辑联结词、全称量词与存在量词学案
展开
这是一份统考版高中数学(文)复习1-3简单的逻辑联结词、全称量词与存在量词学案,共14页。学案主要包含了必记3个知识点,必明1个常用结论,必练4类基础题等内容,欢迎下载使用。
第三节 简单的逻辑联结词、全称量词与存在量词
·最新考纲·
1.了解逻辑联结词“或”“且”“非”的含义.
2.理解全称量词和存在量词的意义.
3.能正确地对含有一个量词的命题进行否定.
·考向预测·
考情分析:逻辑联结词和含有一个量词的命题的否定是高考考查点,题型仍将是选择题或填空题.
学科素养:通过判断命题的真假考查逻辑推理及数学抽象的核心素养.
必备知识——基础落实 赢得良好开端
一、必记3个知识点
1.简单的逻辑联结词
(1)常用的简单的逻辑联结词有“________”“________”“________”.
(2)命题p∧q、p∨q、¬p的真假判断
p
q
p∧q
p∨q
¬p
真
真
真
真
假
真
假
假
真
假
假
真
假
真
真
假
假
假
假
真
[提醒] “命题的否定”与“否命题”的区别
(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论;
(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.
2.全称量词和存在量词
量词名称
常见量词
符号表示
全称量词
所有、一切、任意、全部、每一个等
____
存在量词
存在一个、至少有一个、有些、某些等
____
3.含有一个量词的命题的否定
命题
命题的否定
∀x∈M,p(x)
____________
∃x0∈M,p(x0)
____________
二、必明1个常用结论
命题真假的判断口诀
p∨q→见真即真,p∧q→见假即假,p与¬p→真假相反.
三、必练4类基础题
(一)判断正误
1.判断下列说法是否正确(请在括号中打“√”或“×”).
(1)若命题p∧q为假命题,则命题p,q都是假命题.( )
(2)命题p和¬p不可能都是真命题.( )
(3)若命题p,q至少有一个是真命题,则p∨q是真命题.( )
(4)若命题¬(p∧q)是假命题,则命题p,q中至多有一个是真命题.( )
(5)“长方形的对角线相等”是特称命题.( )
(二)教材改编
2.[选修2-1·P27A组T3改编]命题“∀x∈R,x2+x≥0”的否定是( )
A.∃x0∈R,x02+x0≤0
B.∃x0∈R, x02+x00,-x2+x>0,则命题p的否定为( )
A.∃x≤0,-x2+x>0
B.∃x≤0,-x2+x≤0
C.∀x>0,-x2+x>0
D.∀x>0,-x2+x≤0
2.[2023·山东德州市高三模拟]已知命题p:∀x>0,ln (x+1)>0,则¬p为( )
A.∀x>0,ln (x+1)≤0
B.∃x0>0,ln (x0+1)≤0
C.∀x0
B.∃x0∈R,ln x00
D.i为虚数单位,-1i为虚数
考点二 含有逻辑联结词的命题真假的判断 [综合性]
[例3] (1)[2023·宁夏吴忠一模]已知命题p:“x>2”是“x2-3x+2≥0”的充分不必要条件;命题q:∀x∈R,x2+2x+1>0,则下列命题是真命题的是( )
A.p∨q B.p∧q
C.(¬p)∨q D.(¬p)∧(¬q)
(2)[2023·内蒙古包头一模]设有下列四个命题:
p1:空间共点的三条直线不一定在同一平面内.
p2:若两平面有三个不共线的公共点,则这两个平面重合.
p3:若三个平面两两相交,则交线互相平行.
p4:若直线a∥平面α,直线a⊥直线b,则直线b⊥平面α.
则下述命题中所有真命题的序号是______.
①p1∧p4 ②p1∧p2
③(¬p2)∨p3 ④(¬p3)∨p4
反思感悟 判断含有逻辑联结词命题真假的步骤
【对点训练】
1.[2023·广州市阶段训练题]已知命题p:∀x∈R,x2-x+12x.则下列命题中为真命题的是( )
A.p∧q B.(¬p)∧q
C.p∧(¬q) D.(¬p)∧(¬q)
2.[2023·内蒙古呼和浩特一模]下面是关于复数z=2i1+i的四个命题:p1:z的实部为-1;p2:z的虚部为1;p3:z的共轭复数为1+i;p4:|z|=2.下列命题为真命题的是( )
A.p1∨p3 B.¬p2∨p3
C.p3∧p4 D.p2∧p4
考点三 根据命题的真假求参数的取值范围 [应用性]
[例4] (1)[2022·湖北襄阳联考]若“∃x∈R,x2-2x-a=0”是假命题,则实数a的取值范围为________.
(2)已知p:存在x0∈R,mx02+1≤0,q:任意x∈R,x2+mx+1>0.若p或q为假命题,则实数m的取值范围为________.
一题多变
1.(变条件)若本例(2)将条件“p或q为假命题”改为“p且q为真命题”,其他条件不变,则实数m的取值范围为________.
2.(变条件)若本例(2)将条件“p或q为假命题”改为“p且q为假,p或q为真”,其他条件不变,则实数m的取值范围为________.
反思感悟
1.根据全(特)称命题的真假求参数取值范围的思路
与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题.解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围.
2.根据含逻辑联结词命题的真假求参数的方法步骤
(1)求出每个命题是真命题时参数的取值范围;
(2)根据题意确定每个命题的真假;
(3)由各个命题的真假列关于参数的不等式(组)求解.
【对点训练】
1.[2023·河北张家口市模拟]已知命题p:∃x∈(-1,3),x2-a-2≤0.若p为假命题,则a的取值范围为( )
A.(-∞,-2) B.(-∞,-1)
C.(-∞,7) D.(-∞,0)
2.[2023·安徽模拟]已知c>0,且c≠1,设p:函数y=logcx在R上单调递减;q:函数f(x)=x2-2cx+1在12,+∞上为增函数,若“p∧q”为假,“p∨q”为真,则实数c的取值范围为__________.
微专题❸ 点破生活中的逻辑问题 逻辑推理
正确地使用逻辑用语是现代社会公民应具备的基本素质,无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语在表述和论证中表达自己的思维.有趣的是,日常生活中的一句话或是一件事,常蕴含着逻辑学的知识.
【案例】“便宜无好货,好货不便宜”是我们所熟知的一句谚语,在期待购得价廉物美的商品的同时,我们常常用这句话来提醒自己保持足够的警惕,不要轻易上某些不良商家的当.我们还可以运用逻辑学知识分析这句谚语里蕴含的逻辑关系.
记p表示“便宜”,q表示“不是好货”,那么按“便宜无好货”的说法,p⇒q,即“便宜”(p)是“不是好货”(q)的充分条件;其逆否命题为“¬q⇒¬p”,即¬q(“好货”)是¬p(“不便宜”)的充分条件,即“好货不便宜”.由此可以看出,“便宜无好货”与“好货不便宜”是一对互为逆否关系的命题.非常有趣的是,上海市高考试题曾对此作过考查:
钱大姐常说“便宜无好货”,这句话的意思是:“不便宜”是“好货”的( )
A.充分条件
B.必要条件
C.充分必要条件
D.既不充分又不必要条件
正确选项已显然.
生活中,我们还常用“水滴石穿”、“有志者,事竟成”、“坚持就是胜利”等熟语来勉励自己和他人保持信心、坚持不懈地努力.在这些熟语里,“水滴”是“石穿”的充分条件,“有志”是“事成”的充分条件,“坚持”是“胜利”的充分条件.这正是我们努力的信心之源,激励着我们直面一切困难与挑战,不断取得进步.
数学是一门逻辑性非常强的学科,生活中的交流同样需要讲究逻辑.通过学习和使用常用逻辑用语,我们可以体会逻辑用语在表述和论证中的作用,从而在实际生活中逐步形成自觉利用逻辑知识对一些命题之间的逻辑关系进行分析和推理的意识,能对一些逻辑推理中的错误进行甄别和纠正,使我们对问题的表述更严密、贴切,增强我们学习数学、运用数学的信心和能力.
第三节 简单的逻辑联结词、全称量词与存在量词
积累必备知识
一、
1.(1)且 或 非
2.∀ ∃
3.∃x0∈M,¬p(x0) ∀x∈M,¬p(x)
三、
1.答案:(1)× (2)√ (3)√ (4)× (5)×
2.解析:由全称命题的否定是特称命题知选项B正确.
答案:B
3.解析:因为特称命题的否定是全称命题,所以命题“∃x0∈R,x02-ax0+1x+1.
答案:D
对点训练
1.解析:命题p:∃x>0,-x2+x>0的否定是∀x>0,-x2+x≤0.
答案:D
2.解析:对命题否定时,全称量词改成存在量词,即∃x0>0,ln (x0+1)≤0.
答案:B
3.解析:对于A选项,显然ex>0,故A为真命题;对于B选项,当x0=1时,ln x0=02”是“x2-3x+2≥0”的充分不必要条件,∴命题p是真命题,¬p是假命题.∵存在x0=-1,使得x02+2x0+1=0成立,∴命题q是假命题,¬q是真命题.所以,p∨q是真命题;p∧q是假命题;(¬p)∨q是假命题;(¬p)∧(¬q)是假命题.
(2)如图,ABCDA1B1C1D1是正方体.
对于p1,直线AD、DC、DD1共点D,此时三条直线不在同一平面内,∴p1为真命题;对于p3,平面ABCD、A1ADD1和CDD1C1两两相交,但交线AD,DD1,DC不互相平行,∴p3为假命题;对于p4,设直线A1B1为直线a,平面ABCD为平面α,则a∥α,设直线B1C1为直线b,此时a⊥b,且b∥α,∴命题p4为假命题;
对于p2,结合不共线的三点确定唯一的一个平面,若两平面有三个不共线的公共点,则这两个平面重合,∴p2为真命题.
所以p1∧p4为假命题,①错误;p1∧p2为真命题,②正确;(¬p2)∨p3为假命题,③错误;(¬p3)∨p4为真命题,④正确.
答案:(1)A (2)②④
对点训练
1.解析:当x=1时,x2-x+1=1>0,所以p为假命题,¬p为真命题.当x=3时,x2>2x,所以q为真命题,¬q为假命题.所以p∧q为假命题,(¬p)∧q为真命题,p∧(¬q)为假命题,(¬p)∧(¬q)为假命题.
答案:B
2.解析:由题意得z=2i1+i=2i1-i1+i1-i=1+i,所以z的实部为1,命题p1是假命题;z的虚部为1,所以命题p2是真命题;z的共轭复数为1-i,所以命题p3是假命题;|z|=2,所以命题p4是真命题,所以p1∨p3是假命题,¬p2∨p3是假命题,p3∧p4是假命题,p2∧p4是真命题.
答案:D
考点三
例4 解析:(1)若“∃x∈R,x2-2x-a=0”是假命题,则其否定“∀x∈R,x2-2x-a≠0”是真命题,所以Δ=(-2)2-4×1×(-a)=4+4a
相关学案
这是一份统考版高中数学(文)复习6-1数列的概念与简单表示法学案,共19页。学案主要包含了必记3个知识点,必明2个常用结论,必练4类基础题等内容,欢迎下载使用。
这是一份高考数学统考一轮复习第1章1.3简单的逻辑联结词全称量词与存在量词学案,共6页。学案主要包含了知识重温,小题热身等内容,欢迎下载使用。
这是一份通用版高考数学(理数)一轮复习第3讲《简单的逻辑联结词全称量词与存在量词》学案(含详解),共8页。
