所属成套资源:2023年中考数学二轮复习《二次函数压轴题》强化练习(含答案)
2023年中考数学二轮复习《压轴题-相似问题》强化练习(含答案)
展开
这是一份2023年中考数学二轮复习《压轴题-相似问题》强化练习(含答案),共22页。试卷主要包含了如图,已知抛物线等内容,欢迎下载使用。
2023年中考数学二轮复习《压轴题-相似问题》强化练习1.如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由. 2.如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标. 3.已知抛物线y=x2﹣3x+与x轴交于A,B两点(点A在点B的左边).(1)求A,B两点的坐标;(2)如图1,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DE⊥x轴于点E.当△APO与△ADE的面积比为=时.求点D的坐标;(3)如图2,抛物线与y轴相交于点F.若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边).请问是否存在以Q,A,M为顶点的三角形与△QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由. 4.如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由. 5.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线在第一象限上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得S△DCA=S△ABC,直接写出点D的坐标. 6.如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)连接BC,CD,DB,求∠CBD的正切值;(3)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BE,直线BE与对称轴交于点M,在(2)的条件下,点P是抛物线对称轴上的一点,是否存在点P使△CDB和△BMP相似,若存在,求点P坐标,若不存在,请说明理由. 7.如图①,在平面直角坐标系中,抛物线y=x2+c经过点A(4,3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,﹣2)且垂直于y轴的直线,连接PO.(1)求抛物线的表达式,并求出顶点B的坐标;(2)试证明:经过点O的⊙P与直线l相切;(3)如图②,已知点C的坐标为(1,2),是否存在点P,使得以点P,O及(2)中的切点为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由. 8.在平面直角坐标系中,抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求该抛物线的函数表达式及顶点C的坐标;(2)设该抛物线上一动点P的横坐标为t.①在图1中,当﹣3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;③在图3中,若P是y轴左侧该抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
参考答案1.解:(1)当x=0时,y=﹣2,∴C(0,2),当y=0时,x2﹣x﹣2=0,(x﹣2)(x+1)=0,∴x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),设图象W的解析式为:y=a(x+1)(x﹣2),把C(0,2)代入得:﹣2a=2,∴a=﹣1,∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);(2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,﹣x+b=﹣x2+x+2,x2﹣2x+b﹣2=0,Δ=(﹣2)2﹣4×1×(b﹣2)=0,∴b=3,综上,b的值是2或3;(3)∵OB=OC=2,∠BOC=90°,∴△BOC是等腰直角三角形,如图2,CN∥OB,△CNM∽△BOC,∵PN∥y轴,∴P(1,0);如图3,CN∥OB,△CNM∽△BOC,当y=2时,x2﹣x﹣2=2,x2﹣x﹣4=0,∴x1=,x2=,∴P(,0);如图4,当∠MCN=90°时,△OBC∽△CMN,∴CN的解析式为:y=x+2,∴x+2=x2﹣x﹣2,∴x1=1+,x2=1﹣(舍),∴P(1+,0),综上,点P的坐标为(1,0)或(,0)或(1+,0).2.解:(1)由题意得:,解得:,∴抛物线的解析式为:y=﹣2x2+2x+4;(2)△POD不可能是等边三角形,理由如下:如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,∵C(0,4),D是OD的中点,∴E(0,1),当y=1时,﹣2x2+2x+4=1,2x2﹣2x﹣3=0,解得:x1=,x2=(舍),∴P(,1),∴OD≠PD,∴△POD不可能是等边三角形;(3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,分两种情况:①如图2,△CMP∽△BMH,∴∠PCM=∠OBC,∠BHM=∠CPM=90°,∴tan∠OBC=tan∠PCM,∴====2,∴PM=2PC=2t,MH=2BH=2(2﹣t),∵PH=PM+MH,∴2t+2(2﹣t)=﹣2t2+2t+4,解得:t1=0,t2=1,∴P(1,4);②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,过点P作PE⊥y轴于E,∴∠PEC=∠BOC=∠PCM=90°,∴∠PCE+∠EPC=∠PCE+∠BCO=90°,∴∠BCO=∠EPC,∴△PEC∽△COB,∴=,∴=,解得:t1=0(舍),t2=,∴P(,);综上,点P的坐标为(1,4)或(,).3.解:(1)当y=0时,x2﹣3x+=0,解得:x1=1,x2=5,∴A(1,0),B(5,0);(2)∵DE⊥x轴,∴∠AED=90°,∴∠AOP=∠AED=90°,∵∠OAP=∠DAE,∴△AOP∽△AED,∴==,∴=,∵OA=1,∴AE=2,∴OE=3,当x=3时,y=﹣3×3+=﹣2,∴D(3,﹣2);(3)如图2,设Q(0,m),当x=0时,y=,∴F(0,),∵点Q是线段OF上的动点,∴0≤m≤,当y=m时,x2﹣3x+=m,x2﹣6x+5﹣2m=0,x=3,∴x1=3+,x2=3﹣,∴QM=3﹣,QN=3+,在Rt△AOQ中,由勾股定理得:AQ=,∵∠AQM=∠AQN,∴当△AQM和△AQN相似只存在一种情况:△AQM∽△NQA,∴,∴AQ2=NQ•QM,即1+m2=(3+)(3﹣),解得:m1=﹣1+,m2=﹣1﹣(舍),∴Q(0,﹣1+).4.解:(1)y=x2+2x=(x+1)2﹣1,∴顶点A(﹣1,﹣1);由,解得:或∴B(﹣2,0),C(1,3);(2)证明:∵A(﹣1,﹣1),B(﹣2,0),C(1,3),∴AB=,BC=3,AC=2,∴AB2+BC2=AC2,==,∴∠ABC=90°,∵OD=1,CD=3,∴=,∴,∠ABC=∠ODC=90°,∴△ODC∽△ABC;(3)存在这样的P点,设M(x,0),则P(x,x2+2x),∴OM=|x|,PM=|x2+2x|,当以O,P,M为顶点的三角形与△ABC相似时,有=或=,由(2)知:AB=,CB=3,①当=时,则=,当P在第二象限时,x<0,x2+2x>0,∴,解得:x1=0(舍),x2=﹣,当P在第三象限时,x<0,x2+2x<0,∴=,解得:x1=0(舍),x2=﹣,②当=时,则=3,同理代入可得:x=﹣5或x=1(舍),综上所述,存在这样的点P,坐标为(﹣,﹣)或(﹣,)或(﹣5,15).5.解:(1)设抛物线的解析式为y=ax2+bx+c,将A(4,0),B(1,0),C(0,﹣2)代入y=ax2+bx+c,∴,解得,∴y=﹣x2+x﹣2;(2)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,理由如下:设P(t,﹣t2+t﹣2),则M(t,0),1<t<4,∴PM=﹣t2+t﹣2,∵A(4,0),∴AM=4﹣t,∴tan∠MAP=,∵C(0,﹣2),∴OC=2,OA=4,∴tan∠OAC=,①当∠PAM=∠OAC时,=,解得t=2或t=4(舍),∴P(2,1);②当∠PAM=∠OCA时,=2,解得t=4(舍)或t=5(舍),∴此时P不存在;综上所述:P点坐标为(2,1);(3)设直线AC的解析式为y=kx+b,∴,∴,∴直线AC的解析式为y=x﹣2,过点B作直线AC的平行线y=x+m,∴+m=0,∴m=﹣,∴y=x﹣,联立方程组,解得(舍)或,∴D(3,1).6.解:(1)将点B、C的坐标代入抛物线表达式得:,解得,故抛物线的解析式为y=x2﹣2x﹣3;∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4);(2)如图.∵B(3,0),C(0,﹣3),D(1,﹣4),∴BC2=32+32=18,BC=3,CD2=12+(4﹣3)2=2,CD=,BD2=42+(3﹣1)2=20,BD=2,∴BD2=BC2+CD2,∴△BCD是直角三角形,∠BCD=90°,∴tan∠CBD===;(3)∵点C关于抛物线y=x2﹣2x﹣3对称轴的对称点为E点,y=x2﹣2x﹣3的对称轴为x=1,∴E(2,﹣3),∵B(3,0),∴直线BE为y=3x﹣9,∴M(1,﹣6),由(2)知△CDB是直角三角形,∠BCD=90°,若△CDB和△BMP相似,可分两种情况进行解析:①∠MPB=∠BCD=90°时,点P在x轴上,∵M(1,﹣6),B(3,0),∴PM=6,BP=2,∴,∴=,∵∠MPB=∠BCD=90°,∴△CDB和△PBM,∴P(1,0);②∠MBP=∠BCD=90°时,∵M(1,﹣6),B(3,0),∴MB=2,∵△CDB和△BPM,∴,∴,解得PM=,∴点MP的纵坐标为﹣6=,∴P(1,).综上所述,存在,点P的坐标为(1,0)或(1,).7.解:(1)∵抛物线y=x2+c经过点A(4,3),∴3=4+c,∴c=﹣1,∴抛物线的表达式为y=x2﹣1,顶点B(0,﹣1);(2)证明:过P作PH⊥l,垂足为H,设点P坐标(m,m2﹣1),∵l是过点(0,﹣2)且垂直于y轴的直线,∴PH=m2﹣1+2=m2+1,PO=m2+1,∴PO=PH,即直线l到圆心P的距离等于⊙P的半径,∴经过点O的⊙P与直线l相切;(3)解:存在.理由如下:∵A(4,3),B(0,﹣1),C(1,2),∴BC=,AC=,AB=4.∴BC=AC,∵PO=PH,以P,O,H为顶点的三角形与△ABC相似,∴PH与BC,PO与AC是对应边,∴,设点P(m,m2﹣1),则H(m,﹣2),∴PH=m2﹣1+2=m2+1,OH=,∴,∴×=m2+4,解得m=±1.∴点P坐标(1,﹣)或(﹣1,﹣).8.解:(1)设抛物线的解析式为y=ax2+bx,将A(﹣2,0),B(﹣3,3)代入,∴,解得,∴y=x2+2x,∴C(﹣1,﹣1);(2)①∵P的横坐标为t,∴P(t,t2+2t),设直线BO的解析式为y=kx,∴﹣3k=3,∴k=﹣1,∴y=﹣x,过点P作PG⊥x轴交BO于点G,∴E(t,﹣t)∴PG=﹣t﹣t2﹣2t=﹣t2﹣3t,∴S=×3×(﹣t2﹣3t)=﹣(t+)2+,∵﹣3<t<0,∴t=﹣时,S有最大值;②∵y=x2+2x,∴抛物线的对称轴为直线x=﹣1,设E(﹣1,m),当AO为平行四边形的对角线时,,解得,∴P(﹣1,﹣1);当AP为平行四边形的对角线时,,解得,∴P(1,3);当AE为平行四边形的对角线时,,解得,∴P(﹣3,3);综上所述:P点坐标为(﹣1,﹣1)或(1,3)或(﹣3,3);(3)存在点P使得以点P,M,A为顶点的三角形与△BOC相似,理由如下:∵B(﹣3,3),C(﹣1,﹣1),∴BO=3,OC=,BC=2,∴BO2+CO2=BC2,∴△COB为直角三角形,∠BOC=90°,∴tan∠CBO=,∵PM⊥AM,∴∠BOC=∠PMA,设P(m,m2+2m)(t<0),∴PM=m2+2m,AM=﹣2﹣m,当∠MPA=∠OBC时,=,解得m=﹣2(舍)或m=﹣3,∴P(﹣3,3);当∠PAM=∠OBC时,=,解得m=﹣2(舍)或m=﹣,∴P(﹣,﹣);综上所述:P点坐标为(﹣3,3)或(﹣,﹣).
相关试卷
这是一份2023年中考数学二轮复习《压轴题-圆存在问题》强化练习(含答案),共18页。试卷主要包含了定义等内容,欢迎下载使用。
这是一份2023年中考数学二轮复习《压轴题-新定义综合问题》强化练习(含答案),共18页。试卷主要包含了定义等内容,欢迎下载使用。
这是一份2023年中考数学二轮复习《压轴题-图形交点综合问题》强化练习(含答案),共19页。