中考数学模拟汇编一26三角形全等
展开
这是一份中考数学模拟汇编一26三角形全等,共11页。
(A)边角边 (B)角边角 (C)边边边 (D)角角边
答案;A
二、填空题
[来源:学。科。网]
1、(北京四中模拟8)如图,∠ACB=∠ADB,要使△ACB≌△BDA,请写出一个符合要求的条件
答案 ∠CAB=∠DBA或∠CBA=DAB
2、(北京四中模拟28)
如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是带编号为 的碎片去.
答案:③
3.(海宁市盐官片一模)如图,有一块边长为4的正方形塑料摸板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点,与延长线交于点.则四边形的面积是 .
答案:16
三、解答题
A组
1、(浙江省杭州市中考数学模拟)如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF(不再添加其它线段,不再标注或使用其他字母),并给出证明.
【根据习题改编】
(1)你添加的条件是: ;
(2)证明:
答案:解:(1)(或点D是线段BC的中点),,中任选一个即可﹒
(2)以为例进行证明:
∵ CF∥BE,
∴ ∠FCD﹦∠EBD.
又∵,∠FDC﹦∠EDB,
∴ △BDE≌△CDF.
2、(北京四中三模)
如图,正方形ABCD中,E、F分别是AB和AD上的点,已知CE⊥BF,垂足为M,请找出和BE相等的线段,并证明你的结论。
答案:和BE相等的线段是:AF 通过证明△ABF≌△BCE得证BE=AF
3、(如皋市九级期末考)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是: ,并给予证明.
答案:答案不惟一.添加条件为AE=AF或∠EDA=∠FDA或∠AED=∠AFD.
以添加条件AE=AF为例证明.
证明:在△AED与△AFD中,
∵AE=AF,∠EAD=∠FAD,AD=AD,
∴△AED≌△AFD(SAS).
4、(北京四中模拟)
已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线
交DC于点E.
求证:(1)△BFC≌△DFC;
(2)AD=DE.
答案:略
2、(杭州模拟26) 如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10cm,OC=6cm。P是线段OA上的动点,从点O出发,以1cm/s的速度沿OA方向作匀速运动,点Q在线段AB上。已知A、Q两点间的距离是O、P两点间距离的a倍。若用(a,t)表示经过时间t(s)时,△OCP、△PAQ 、△CBQ中有两个三角形全等。请写出(a,t)的所有可能情况 .
答案:(0,10),(1,4),(,5)
3、(北京四中模拟)如图,已知.求证:.
证明:
.
.
又,
.
4、(北京四中模拟26)已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2。
(1)图中哪个三角形与△FAD全等?证明你的结论;
答案:解:(1)△。证明:。
又
5、(北京四中模拟28)
如图,点F是CD 的中点,且AF⊥CD,BC=ED,∠BCD=∠EDC.
(1)求证:AB=AE;
(2)连接BE,请指出BE与AF、BE与CD分别有怎样的关系?
(只需写出结论,不必证明).
答案:
证明:联结AC、AD----------------------------------------------------------------1分
∵点F是CD 的中点,且AF⊥CD,∴AC=AD---------------1分
∴∠ACD=∠ADC------------------------------------------------------1分
∵∠BCD=∠EDC, ∴∠ACB=∠ADE-------------------------1分
∵BC=DE,AC=AD
∴△ABC≌△AED, -------------------------------------------------------1分
∴AB=AE-------------------------------------------------------------------1分
BE⊥AF,BE//CD,AF平分BE--------------------------------------1分,1分,2分
(注:写出一个得1分,写出两个得2分,写出三个得4分)
6、(北京四中中考模拟20)(本题8分)如图,AB∥CD
(1)用直尺和圆规作的平分线CP,CP交AB于点E(保留作图痕迹,不写作法)
(2)在(1)中作出的线段CE上取一点F,连结AF。要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不要求证明)。
解:(1)作图略;
(2)取点F和画AF正确(如图);
添加的条件可以是:F是CE的中点;
AF⊥CE;∠CAF=∠EAF等。(选一个即可)[来源:学。科。网]
7. (黄冈市浠水县中考调研试题)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连结BD.
求证:(1)△BAD≌△CAE; (2)试猜想BD、CE有何特殊位置关系,并证明.
答案:(1)AB=AC,易证∠BAD=∠CAE ,AD=AE,所以△BAD≌△CAE(SAS)
(2)BD⊥CE,证明略.
8. (北京四中中考全真模拟17)已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于,若MA=MC.
求证:CD=AN.
答案:证明:如图,
因为 AB∥CN,所以 在和中
≌
是平行四边形
B组
1.( 天一实验学校 二模)如图,已知中,厘米,厘米,点为的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?
答案: ⑴
①全等。
理由:∵AB=AC,∴∠B=∠C,运动1秒时BP=3,CP=5,CQ=3
∵D为AB中点,AB=10,∴BD=5.
∴BP=CQ,BD=CP,∴△BPD≌△CQP
②若Q与P的运动速度不等,则BP≠CQ,若△BPD与△CQP全等,则BP=CP=4
CQ=5,Q的运动速度为5×cm/s
⑵设经过t秒两点第一次相遇则
(-3)t=20
t=
3t=80,
80÷28=2
×28=24,所以在AB边上。
即经过两点第一次相遇,相遇点在AB上。
2.(安徽省巢湖市七中模拟)如图,是平行四边形的对角线上的点,.
请你猜想:与有怎样的位置关系和数量关系?
并对你的猜想加以证明.
猜想:
证明:
答案:猜想:BE∥DF BE=DF
证明:在平行四边形ABCD中,AB=CD、AB∥CD
∴∠BAC=∠DCA
又∵ AF=CE
∴AE=CF
∴△ABE≌△CDF (SAS)
∴BE=DF ∠AEB=∠CFD
∴∠BEF=∠DFE
∴BE∥DF
3.(北京四中一模)如图,在 △ABC中,以AB为直径的⊙O交 BC于点 D,连结 AD,请你添加一个条件,
使△ABD≌△ACD,并说明全等的理由.
你添加的条件是
证明:
答案: 本题答案不唯一,添加的条件可以是
①AB=AC,②∠B=∠C,③BD=DC(或D是BC中点),
④∠BAD=∠CAD(或AD平分∠BAC)等.
4.(浙江杭州义蓬一模)(本小题满分10分) 图1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,E是AB的中点,连结CE并延长交AD于F.
(1)求证:① △AEF≌△BEC;② 四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
30°
答案:(1)求证:① △AEF≌△BEC;
∠ABC=90°,E是AB的中点,AE=BE,∠FAB=∠EBC=60°,∠FEB=∠BEC
所以△AEF≌△BEC;
② 四边形BCFD是平行四边形;
可得DF∥BC,FC∥DB,或DF∥BC,且DF=BC均可
(2)设BC=1,则AC=,AD=AB=2
设DH=x,由折叠得DH=CH=x,(2-x)+3=x
X= 所以Sin∠ACH=
5. (深圳市全真中考模拟一) 如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
答案:(1)证明:∵四边形ABCD是正方形.
∴BOE=AOF=90.OB=OA ……………… (1分)
又∵AMBE,∴MEA+MAE=90=AFO+MAE
∴MEA=AFO………………(2分)
∴Rt△BOE≌ Rt△AOF ……………… (3分)
∴OE=OF ………………(4分)
(2)OE=OF成立 ……………… (5分)
证明:∵四边形ABCD是正方形,
∴BOE=AOF=90.OB=OA ……………… (6分)
又∵AMBE,∴F+MBF=90=B+OBE
又∵MBF=OBE
∴F=E………………(7分)
∴Rt△BOE≌ Rt△AOF ……………… (8分)
∴OE=OF ………………(9分)
6. (河南新乡模拟)(10分).如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B恰好落在x轴上,记为B′,折痕为CE,已知tan∠OB′C=.
(1)求B′ 点的坐标;
(2)求折痕CE所在直线的解析式.
答案:解:(1)在Rt△B′OC中,tan∠OB′C=,OC=9,
∴ . ………………………………………………………………………3分
解得OB′=12,即点B′ 的坐标为(12,0). ………………………………………4分
(2)将纸片翻折后,点B恰好落在x轴上的B′ 点,CE为折痕,
∴ △CBE≌△CB′E,故BE=B′E,CB′=CB=OA.
由勾股定理,得 CB′==15. … …………………………………5分
设AE=a,则EB′=EB=9-a,AB′=AO-OB′=15-12=3.
由勾股定理,得 a2+32=(9-a)2,解得a=4.
∴点E的坐标为(15,4),点C的坐标为(0,9). 5分
设直线CE的解析式为y=kx+b,根据题意,得 …………… 8分
解得 ∴CE所在直线的解析式为 y=-x+9. ……
7、(黄冈市浠水县)如图,D是AB上一点,DF交AC于点E,AE=EC,CF∥AB.
求证:AD=CF.
答案:证明:,.…………(2分)
又,,
.………………………(5分)
.…………………………………(6分)
8. (浙江省杭州市模2)(本小题满分10分)[来源:学.科.网]
如图1,点P、Q分别是边长为4cm的等边∆ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时∆PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
答案:(1)不变。
又由条件得AP=BQ,∴≌(SAS)
∴
∴
(2)设时间为t,则AB=BQ=t,PB=4-t
当
当
∴当第秒或第2秒时,∆PBQ为直角三角形
(3)不变。
∴
又由条件得BP=CQ,∴≌(SAS)
∴ 又
∴
[来源:Z#xx#k.Cm]
相关试卷
这是一份中考数学模拟汇编一25三角形的基础知识,共8页。
这是一份中考数学模拟汇编一27等腰三角形,共5页。
这是一份中考数学模拟汇编一28直角三角形与勾股定理,共13页。