小学数学长方体和正方体的体积第二课时教学设计及反思
展开这是一份小学数学长方体和正方体的体积第二课时教学设计及反思,共7页。教案主要包含了教学内容,教学目标,教学的重难点,板书设计,教学反思等内容,欢迎下载使用。
一、教学内容
解决有关表面积的实际问题
教材第7页的例5。
长方体和正方体的体积(二)
教材第18页的内容。
本课以引导学生猜测,提问长方体和正方体有哪些特征。
长方体和正方体的特征是探究长方体和正方体表面积计算方法的基础,组织回顾,为下面的学习做铺垫。同时以猜测哪个纸盒用的硬纸板多一些引出表面积计算的需求,激发学生探究的欲望,自然过渡到长方体和正方体的表面积探究活动中。引导学生注重对比。对比例4和例5,可以让学生发现不同情况下求的面的个数不同。
1. 通过复习巩固已学知识,把学生的思维调动起来,激发了学生的求知欲望。
2.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,在学生理解和掌握长方体、正方体特征和表面积的基础上,让学生自己归纳、探索底面积的定义和计算公式,体现数学学习是一个再创造过程。通过让学生自主探索交流,指一指各物体的底面,并通过长方体木料的教学,区分了底面和侧面,加深了学生对于底面的认识。通过交流探讨,得出长方体和正方体的底面积,也进一步加强了对底面的认识。
二、教学目标
使学生能解决有关表面积的实际问题。
培养学生的空间观念。
使学生理解和掌握长方体和正方体体积的另外一种计算方法。
引导学生通过观察,找出规律,总结出体积公式。
.鼓励学生积极思考,探索新知。
三、教学的重难点
【教学重点】:
1.正确理解长方体和正方体的体积计算公式的推导过程。
2.正确运用体积公式计算长方体和正方体的体积。
【教学难点】:灵活解决实际问题。
【教学学具】: 饼干盒。
学情分析
本节课的教学重点是理解并掌握长方体(或正方体)物体的表面积的计算方法,学生可能会忽略有些不应计算的面,教学中应特别提示学生注意这一点。
而长方体与正方体的体积公式,除了有一般与特殊的关系(正方体是特殊的长方体,正方体的体积公式是长方体体积公式的特例),还有相同的内容。认识它们的相同,能简化知识结构。第18页教学这个内容,分三步进行:第一步认识长方体和正方体的底面。教材在长方体、正方体的直观图上,用涂颜色和文字标注等办法呈现它们的底面,让学生看到“底面”一般指长方体、正方体的下面(认识长方体时曾指过上、下、前、后、左、右三组相对的面)。第二步认识底面积。长方体或正方体的底面,都是表面的一部分。教材指出,长方体和正方体底面的面积,叫作它们的底面积,帮助学生建立底面积的概念,要求学生研究计算底面积的方法,联系求表面积的经验,得出长方体的底面积=长×宽,正方体的底面积=棱长×棱长,进一步加强对底面的认识。第三步演变原来的体积公式。在“长方体的体积=长×宽×高”里,如果把“长×宽”看成先算底面积,那么体积公式可以演变成“底面积×高”。在“正方体的体积=棱长×棱长×棱长”里,如果把“棱长×棱长”看作先算底面积,那么体积公式也演变成“底面积×高”。由于长方体、正方体的体积公式都能演变成“底面积×高”,因而获得了统一。
教学过程
【长方体体积】
(一)、导入
一个长方体的形状如右图。
它上、下两个面的面积和是多少平方分米?
它前、后两个面的面积和是多少平方分米?
它左、右两个面的面积和是多少平方分米?
这个长方体的表面积是多少平方分米?
教师:上节课,我们学习了长方体和正方体表面积的计算方法,学习长方体的表面积有什么用呢?在日常生活中,计算地砖面积,粉刷墙壁的面积等都需要用到这部分知识。
(二)、教学显现
课件出示例5。
一个无盖的长方体玻璃鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?
1.学生独立探究。
①读题,理解题意。②自主分析实际情况。③根据题目的实际情况,运用长方体的有关知识进行计算。
2.引导学生汇报。
学生甲:分别求出前、后、左、右和下面的面积,再相加。
5×3.5×2+3.5×3×2+5×3
=35+21+15
=71(平方分米)
学生乙:先求出6个面的总面积,再减去上面的面积。
(5×3.5+5×3+3.5×3)×2-5×3
=(17.5+15+10.5)×2-15
=43×2-15
=86-15
=71(平方分米)
教师质疑:还有其他方法吗?
3.总结。
今天解答的制作鱼缸所需材料的问题,实际是求什么?(求这个长方体的表面积)想一想,与上节课所学的求长方体的表面积有什么不同?(今天这个例题虽然也是长方体,但它只有5个面,要求所需材料实际是求5个面的面积总和)在解决类似这样的长方体或正方体的实际问题时,要注意什么?(主要是想清楚所求的长方体或正方体有几个面)
4.拓展。
(1)教师出示饼干盒。
(2)提问:要求制作这个饼干盒需要多少硬纸板,需要知道哪几个条件?(需要知道这个饼干盒的长、宽、高)求需要多少硬纸板,这是求什么?(它的表面积)是几个面?(6个面)如果要求侧面一圈商标纸的面积,又是求几个面的面积?(4个面)说一说是哪4个面。
(三)、课堂作业
1.一个无盖的正方体铁皮水箱的棱长是0.5米,做20个这样的水箱,需要铁皮多少平方米?
2.富丽园小区要给游泳池更换瓷砖,已知游泳池长25米,宽18米,深1.8米。至少要准备多少平方米的瓷砖?
3.学校要给18间教室的电视机安装电视机框,已知电视机长35厘米,高30厘米,厚25厘米。至少要准备多少平方米的材料?
4.张强要做两个台灯罩(如下图),分别用多少平方厘米的塑料板?
(四)、思维训练
左图是一个正方体,请在它的8个顶点中选出4个,使它们中的
任何3点构成的三角形都是等边三角形。
课堂作业新设计
1. 0.5×0.5×5×20=25(平方米)
2. 25×18+(25×1.8+18×1.8)×2=604.8(平方米)
3. 35×30+(35×25+30×25)×2×18=77400(平方厘米)=7.74(平方米)
4. (30×18+15×30)×2+18×15=2250(cm2)
(20×15+10×15)×2+20×10=1100(cm2)
思维训练
任意相邻的三点所构成的三角形都不是等边三角形,如三角形ABD、三角形DEH、三角形BCF等。而同一面内任意不相邻的两点间的距离都相等,如AF=BE、BG=CF、CH=DG、AH=DE等。并且AF=BG=CH=AH。因此,选出的4个点应两两不相邻。它们是A、C、F、H或B、D、E、G。
教材习题
教材第7页练一练
14×10+8×14×2+10×8×2=524(cm2) 10×10×5=500(cm2)
练习二
1. (1)4 3 12 (2)4 2 8 (3)3 2 6 (4)52
2. (1)5×5+5×3.5+5×3.5=60(dm2) (2)60×2=120(dm2)
3. (25×20+25×15+20×15)×2=2350(平方厘米)
4. 20×20×6=2400(平方厘米)
5. 正方体 864 长方体 1152 长方体 1032
6. (17+11)×2×22=1232(平方厘米)
7. 31×27×2+2.5×27×2+31×2.5=1886.5(平方厘米)
8. 木板:25×35×2+40×25×2=3750(平方厘米)
纱网:40×35×2=2800(平方厘米)
9. 8.5×6+8.5×4.2×2+6×4.2×2-35.8=137(平方米)
10. 内盒:长×宽+长×高×2+宽×高×2 外盒:(宽+高)×长×2
思考题
(1)前面: 上面: 右面:
(2)40平方厘米 (3)54平方厘米
六、板书设计
解决有关表面积的实际问题
5×3.5×2+3.5×3×2+5×3
=35+21+15
=71(平方分米)
(5×3.5+5×3+3.5×3)×2-5×3
=(17.5+15+10.5)×2-15
=43×2-15
=86-15
=71(平方分米)
七、教学反思
1.学生掌握了长方体与正方体表面积的计算,并对长方体与正方体的特征有了初步认识。
2.部分学生计算不过关,重复计算出某(几)个面的面积,弄不懂每个面面积的求法。
3.运用长方体和正方体的表面积的计算方法解决一些简单的实际问题时,个别同学不知道该求几个面的面积。
【正方体体积】
(一)、导入
1.长方体和正方体的体积计算公式用字母怎样表示?
2.分别计算出下面的长方体或正方体的体积。
(1)a=7dm,b=5dm,h=3dm (2)a=5cm,b=5cm,h=2cm (3)a=15cm
学生独立完成,教师指名板演。
(1)7×5×3=105(dm3) (2)5×5×2=50(cm3) (3)15×15×15=3375(cm3)
(二)、教学显现
1.观察上面习题中的三个算式,每道题前两个数相乘,得出的结果是这个物体的什么?(底面积)第三个因数是这个物体的什么?(是这个物体的高)
教师板书:
2.讨论。
通过这组题目的练习,你有什么发现?
讨论后得出:长方体的体积除了用“长×宽×高”计算外,还可以直接用“底面积×高”来计算。
3.提问。
正方体的体积也可以这样计算吗?为什么?
正方体的体积也可以用“底面积×高”计算,因为“棱长×棱长”得出的是底面积,再乘高,就可以得出正方体的体积。
教师板书:长方体(或正方体)的体积=底面积×高
用字母表示:V=Sh
(三)、课堂作业新设计
1.先计算长方体或正方体的底面积,再计算它们的体积。
2.一个长方体的底面积是18平方厘米,高是5厘米,求它的体积。
3.把一个棱长为4厘米的正方体钢坯铸成一根长4厘米、宽2厘米的长方体钢材,这个长方体的高是多少厘米?
(四)、思维训练
有甲、乙、丙三种大小不同的正方体木块,其中甲的棱长是乙的棱长的12,乙的棱长是丙的棱长的23。如果用甲、乙、丙三种木块拼成一个体积尽可能小的大正方体(每种至少用一块)。那么最少需要这三种木块多少块?
课堂作业新设计
1. S=450cm2 V=4500cm3 S=100dm2 V=1000dm3
2. 90立方厘米
3. 4×4×4÷(4×2)=8(厘米)
思维训练
50块
教材习题
教材第18页练一练
1. 20×16=320(m2) 20×16×10=3200(m3) 5×5=25(cm2) 5×5×5=125(cm3)
2. 15×6=90(立方厘米) 3. 0.3×0.3=0.09(平方米) 0.09×3=0.27(立方米)
练习四
1. 270cm3 1m3 216dm3 2. 12.24立方米 3. 512立方分米 1382.4千克
米
六、板书设计
长方体和正方体的体积(二)
7×5×3—=105(dm3) 5×5×2—=50(cm3) 15×15×15=3375(cm3)
底面积 高 底面积 高 底面积 高
长方体(或正方体)的体积=底面积×高
七、教学反思
1.学生已经了解了长方体和正方体体积的意义,初步掌握了长方体和正方体体积公式。
2.学生的求知欲望较强。
3.学生还没建立底面积的概念。
相关教案
这是一份六年级上数学教学反思长方体和正方体体积的统一公式_苏教版,共35页。
这是一份小学数学苏教版六年级上册五 分数四则混合运算第二课时教案及反思,共7页。教案主要包含了教学目标,教学重难点,板书设计,教学过程等内容,欢迎下载使用。
这是一份小学数学苏教版六年级上册三 分数除法第一课时教学设计及反思,共7页。教案主要包含了教学重点,教学难点,教学学具,课堂作业参考答案等内容,欢迎下载使用。