








- 27.2.2直线和圆的位置关系 课件 课件 9 次下载
- 27.2.3切线(1)课件 课件 10 次下载
- 27.3圆中的计算问题(1)课件 课件 7 次下载
- 27.3圆中的计算问题(2)课件 课件 8 次下载
- 27.4正多边形和圆 课件 课件 8 次下载
初中数学华师大版九年级下册3. 切线优秀课件ppt
展开27.2.3切线(2)
教学目标
【知识与能力】
通过探究,使学生发现、掌握切线长定理。
【过程与方法】
学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。
【情感态度价值观】
培养观察、分析、归纳问题的能力。
教学重难点
【教学重点】
切线长定理及其应用,三角形的内切圆的画法和内心的性质。
【教学难点】
三角形的内心及其半径的确定。
课前准备
无
教学过程
一、巩固上节课学习的知识
请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)[来源:学科网ZXXK]
你能说明以下这个问题?
如右图所示,PA是的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?
解:连结OE,过O作,垂足为F点
因为 AB是⊙O的切线
所以
又因为PA是的平分线,
所以 [来源:学科网ZXXK]
所以 AC是⊙O的切线
二、探究从圆外一点引圆的两条切线,切线长相等以及这一点与圆心的连线平分两条切线的夹角
问题1、从圆外一点可以作圆的几条切线?请同学们画一画。
2、请问:这一点与切点的两条线段的长度相等吗?为什么?
3、切线长的定义是什么?
通过以上几个问题的解决,使同学们得出以下的结论:
从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的连线平分两条切线的夹角。
在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。
三、对以上探究得到的知识的应用
思考:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知,,(1)求的周长;(2)求的度数。
解:(1)连结PA、PB、EF是⊙O的切线
所以,,
所以的周长
(2)因为PA、PB、EF是⊙O的切线
所以,,
,
所以
所以
四、三角形的内切圆
想一想,发给同学们如图27.2.11所示三角形纸片,请在它的上面截一个面积最大的圆形纸片?
提示:画圆必须确定其位置和大小,即确定圆的圆心和半径,而要截出的圆的面积最大,这个圆必须与三角形的三边都相切。
如图27.2.12,在△ABC中,如果有一圆与AB、AC、BC都相切,那么该圆的
圆心到这三角形的三边的距离都相等,如何找到这个圆的圆心和半径呢?
等待同学们想过之后再阐述如何确定圆心和半径。
我们知道,角平分线上的点到角的两边距离相等,反过来,到角两边距离相等
的点在这个角的平分线上。因此,圆心就是△ABC的角平分线的交点,而半径是这
个交点到边的距离。
根据上述所阐述的,同学们只要分别作、的平分线,他们的交
点I就是圆心,过I点作,线段ID的长度就是所要画的圆的半径,因此以I点为圆心,ID长为半径作圆,则⊙I必与△ABC的三条边都相切。
与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三条内角平分线的交点,它到三角形三边的距离相等。
问题:三角形的内切圆有几个?一个圆的外切圆三角形是否只有一个?
例题:△ABC 的内切圆⊙O 与AC、AB、BC分别相切于点D、E、F,且AB=5厘米,BC=9厘米,AC=6厘米,求AE、BF和CD的长。
五、课堂练习
P51 练习1、2、3
六、小结[来源:学科网]
1、切线长定理:从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心连线平分两条切线的夹角。
2、三角形的内切的内心是三角形三条角平分线的交点,它到三角形三条边的距离相等。
初中数学华师大版九年级下册3. 切线一等奖课件ppt: 这是一份初中数学华师大版九年级下册3. 切线一等奖课件ppt,文件包含2723切线1课件pptx、2723切线1教案docx等2份课件配套教学资源,其中PPT共22页, 欢迎下载使用。
初中华师大版3. 切线获奖ppt课件: 这是一份初中华师大版3. 切线获奖ppt课件,文件包含2723切线第2课时切线长定理pptx、第27章圆2723切线第2课时docx、2723切线第2课时同步练习docx等3份课件配套教学资源,其中PPT共22页, 欢迎下载使用。
初中数学3. 切线优质课件ppt: 这是一份初中数学3. 切线优质课件ppt,文件包含2723切线第1课时切线的判定与性质pptx、第27章圆2723切线第1课时docx、2723切线第1课时同步练习docx等3份课件配套教学资源,其中PPT共19页, 欢迎下载使用。