|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年江苏省盐城市响水中学高一下学期期初检测数学试题(含答案解析)
    立即下载
    加入资料篮
    2021-2022学年江苏省盐城市响水中学高一下学期期初检测数学试题(含答案解析)01
    2021-2022学年江苏省盐城市响水中学高一下学期期初检测数学试题(含答案解析)02
    2021-2022学年江苏省盐城市响水中学高一下学期期初检测数学试题(含答案解析)03
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省盐城市响水中学高一下学期期初检测数学试题(含答案解析)

    展开
    这是一份2021-2022学年江苏省盐城市响水中学高一下学期期初检测数学试题(含答案解析),共17页。试卷主要包含了 函数f=lg2的定义域是, 已知a=lg32,b=0等内容,欢迎下载使用。

    2021-2022学年江苏省盐城市响水中学高一下学期期初检测数学试题

    1.  已知集合,集合,则(    )

    A.  B.  C.  D.

    2.  函数的定义域是(    )

    A.  B.
    C.  D.

    3.  化简的值为(    )

    A.  B.  C.  D.

    4.  已知,则的大小关系为(    )

    A.  B.  C.  D.

    5.  若函数上最小值为,则(    )

    A. 12 B. 1 C. 1 D.

    6.  设定义在R上的奇函数满足,则的解集为(    )

    A.  B.
    C.  D.

    7.  已知函数的图象与函数的图象没有公共点,则实数m的值可以为(    )

    A.  B. 0 C. 1 D. 2

    8.  已知函数若存在互不相等的实数abcd满足,则的取值范围为(    )

    A.  B.  C.  D.

    9.  已知角,满足,则下列结论正确的是(    )

    A.  B.
    C.  D.

    10.  函数的零点所在区间可能为(    )

    A.  B.  C.  D.

    11.  已知函数,则下列说法正确的是(    )

    A. 的最小正周期是,则
    B. 时,的对称中心的坐标为
    C. 时,
    D. 在区间上单调递增,则

    12.  已知函数上单调递增,则的取值可以是(    )

    A. 1 B. 3 C. 5 D. 7

    13.  以下有关命题的说法错误的命题的序号是__________.

    ①若命题p:某班所有男生都爱踢足球,则:某班至少有一个男生爱踢足球;

    ②已知ab是实数,那么“”是的必要不充分条件;

    ③若

    ④幂函数时为减函数,则

     

    14.  若正数ab满足,则的最小值为__________.

    15.  设函数则满足不等式x的取值范围是_____.

    16.  将函数的图象向右平移个单位后得到函数的图象,若存在,使得,则__________.

    17.  已知函数的图象经过点

    a,并比较的大小;

    求函数的值域.

     

    18.  在①将函数图象向右平移个单位所得图象关于y轴对称:

    ②函数是奇函数;

    ③当时,函数取得最大值.

    三个中任选一个,补充在题干中的横线处,然后解答问题.

    题干:已知函数,其中,其图象相邻的对称中心之间的距离为________.

    求函数的解析式;

    求函数上的最小值,并写出取得最小值时x的值.

     

    19.  已知函数

    在所给的直角坐标系内画出的图象并写出的单调区间;

    求不等式的解集.

     

    20.  已知函数的最小值为,且
    求实数a的值;
    求函数的最大值,并求此时x的取值集合.

    21.  D是函数定义域内的一个子集,若存在,使得成立,则称的一个“弱不动点”,也称在区间D上存在“弱不动点”.设函数

    ,求函数的“弱不动点”;

    若函数上不存在“弱不动点”,求实数a的取值范围.

     

    22.  已知函数

    ,求的对称中心;

    已知,函数图象向右平移个单位,得到函数的图象,的一个零点,若函数上恰好有10个零点,求的最小值;

    已知函数,在第问条件下,若对任意,存在,使得成立,求实数a的取值范围.


    答案和解析

     

    1.【答案】A 

    【解析】

    【分析】

    本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.
    求出集合B,由此能求出

    【解答】

    解:集合
    集合

    故选:

      

    2.【答案】C 

    【解析】

    【分析】

    本题考查对数型复合函数的定义域,属于基础题.
     求出 x的范围即可得解.

    【解答】

    解:由题意,得
    解得:
    即函数 的定义域为
    故选

      

    3.【答案】C 

    【解析】

    【分析】

    本题考查三角函数的化简求值,涉及诱导公式和两角和与差的三角函数公式,属于基础题.
    先由诱导公式将化为,再由两角和的余弦公式可得.

    【解答】

    解:


    故选

      

    4.【答案】D 

    【解析】

    【分析】

    本题考查三个数的大小的比较,解题时要认真审题,注意对数函数的单调性的合理运用,属于基础题.
    利用对数函数的单调性比较.

    【解答】

    解:因为
    所以
    故选:D

      

    5.【答案】B 

    【解析】

    【分析】

    本题考查了二次函数的对称轴的求法,二次函数的单调性,根据单调性求二次函数在闭区间上的最值的方法,考查了计算能力,属于基础题.
    根据二次函数的解析式可得出的对称轴为,图象开口向上,根据上的最小值为,讨论a时,可得出时,可得出时,可得出,解出a并验证是否满足a的范围即可.

    【解答】

    解:函数图象的对称轴为,图象开口向上,
    时,函数上单调递增.则,由,得,不符合
    时,则,由,得符合;
    时,函数上单调递减,
    ,由,得不符合,
    综上可得
    故选:

      

    6.【答案】B 

    【解析】

    【分析】

    本题考查函数的奇偶性的应用,属于基础题.
    由奇函数的定义求得时的函数解析式,然后分类讨论解不等式.

    【解答】

    解:时,,即
    时,
    因此时,,所以
    综上,不等式的解为
    故选:

      

    7.【答案】D 

    【解析】

    【分析】

    本题考查函数的交点与方程的根,属中档题.
    根据题意可将原式转化为无解,求函数的值域为,即可得到答案。

    【解答】

    解:函数的图象与函数的图象没有公共点,

    无解,

    函数的值域为

    ,或

    故选:

      

    8.【答案】D 

    【解析】

    【分析】

    本题考查数形结合的思想及用函数的单调性求函数的最值,属于中档题.
    由题意如图所示,要使足,可得abcd的关系,进而可得的表达式,再由c的范围由函数的单调性可得其范围.

    【解答】

    解:要使
    如图所示:,可得,且
    所以
    单调递减,所以
    故选:

      

    9.【答案】AD 

    【解析】

    【分析】

    本题主要考查了三角函数的诱导公式,属于基础题.
    利用,以及,结合诱导公式逐项进行判断.

    【解答】

    解:,故A正确;
    B.,故B错误;
    C.,故C错误;
    D.,故D正确.
    故选

      

    10.【答案】ABC 

    【解析】

    【分析】

    本题主要考查函数的零点问题,是中档题.
    利用数形结合,易判断函数有3个零点,再利用零点判定定理可得解.

    【解答】

    解:因为函数的定义域为
    ,则

    画图可得,函数3个交点,如图:

    其中两个零点所在区间为

    ,由零点判定定理可得,函数的第三个零点在区间
    故选

      

    11.【答案】AD 

    【解析】

    【分析】

    本题主要考查了正切函数的图象和性质,属于中档题.
    利用正切函数的周期公式判断A;利用正切函数的对称中心判断B;利用正切函数的单调性以及诱导公式判断C;利用正切函数的单调性判断

    【解答】

    解:的最小正周期是,则,则,故A正确;
    B.时,,令,则,则对称中心的坐标为,故B错误;
    C.时,
    因为,所以,所以,故C错误;
    D.,则
    因为在区间上单调递增,则,解得:
    所以,故D正确.
    故选

      

    12.【答案】AC 

    【解析】

    【分析】

    本题主要考查三角函数的单调性,对称性和对称轴的应用,根据条件求出的值是解决本题的关键,属于中档题.
    根据可确定m,即可确定的取值情况,然后结合上单调,进行验证即可确定答案.

    【解答】

    解:函数
    ①,
    ,则是函数的一个对称中心,
    ②,
    两式相减得:m
    上单调增,则,则
    的取值在1357911之中;
    时,,故
    此时此时若单调递增,符合题意;
    时,,此时无解,不符合题意;
    时,,故
    此时,因为,则
    单调递增,符合题意;
    时,,故
    此时
    上不单调,不符合题意;
    故选:AC

      

    13.【答案】①③ 

    【解析】

    【分析】

    本题主要考查全称量词命题、存在量词命题的否定判定,考查必要条件、充分条件的判断,属于中档题.
    根据全称量词命题的否定为存在量词命题,即可判断①;根据充分条件、必要条件的定义判断②,利用特殊值判断③,根据幂函数的性质判断④;

    【解答】

    解:对于①,命题p:某班所有男生都爱踢足球,则:某班存在一个男生不爱踢足球,故①错误;
    对于②,由,则,所以由推不出,由可以推出,所以的必要不充分条件,故②正确;
    对于③,由得不到,如,则,故③错误;
    对于④,因为为幂函数,所以,解得
    又函数在时为减函数,所以,解得,所以,故④正确;
    故答案为①③

      

    14.【答案】3 

    【解析】

    【分析】

    本题考查基本不等式的性质,属于基础题.
    直接利用基本不等式计算可得

    【解答】

    解:因为,所以,当且仅当,即时取等号;
    故答案为:3

      

    15.【答案】 

    【解析】

    【分析】

    本题主要考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键.属于中档题.
    根据分段函数的表达式,分别讨论x的取值范围,进行求解即可.

    【解答】

    解:易知是增函数,是增函数,又

    所以R内是增函数,

    时,,所以

    时,,所以成立,综上,不等式的解集是
    故答案为

      

    16.【答案】 

    【解析】

    【分析】

    本题考查的知识要点:三角函数关系式的恒等变换,正弦函数的性质的应用,主要考查学生的运算能力和转换能力,属于中档题型.
    根据三角函数图象的平移变换求得,由,得,进而得
    时,

    【解答】

    解:由题知
    所以
    所以
    Z Z
    Z Z
    所以
    时,
    故答案为:

      

    17.【答案】解:由已知得:,解得,所以
    因为R上单调递减,
    所以

    解:因为
    所以,故的值域是 

    【解析】本题考查指数函数的性质,函数的值域,属于基础题,
    根据函数过点代入求出a,即可得到函数解析式,即可判断函数的单调性,再利用作差法比较的大小,即可判断;
    首先求出指数的范围,再根据指数函数的性质计算可得;
     

    18.【答案】解:因为函数的图象相邻的对称中心之间的距离为

    所以,即周期
    所以

    若选择①,

    因为函数图象向右平移个单位所得图象关于y轴对称,

    所以的图象关于y轴对称,
    所以

    因为
    所以
    所以函数的解析式为

    若选择②,

    因为是奇函数,

    所以
    因为
    所以
    所以函数的解析式为

    若选择③,

    由题设,当时,函数取得最大值,

    所以当,即

    因为
    所以
    所以函数的解析式为

    因为
    所以

    所以当,即时,函数取得最小值,最小值为

     

    【解析】本题主要考查函数的解析式,正余弦函数的图像性质的应用,三角函数的最值,属于中档题.
    根据题意得出,即可得到函数的解析式;
    根据所得解析式,结合,正弦函数的图象性质,可得到函数的最小值即对应x的值.
     

    19.【答案】由解析式知:

    x

    0

    1

    2

    3

    4

    5

    0

    0

    0

    0

    0

    的图象如下图所示:
     
    由图象知,的单调递增区间为,单调递减区间为
    ,解得
    结合图象知:的解集为 

    【解析】本题主要考查分段函数的解析式和图象,考查函数的单调性,考查不等式的解集,属于中档题.
    根据解析式得到函数图象的坐标列表,在坐标系中描点画出函数图象,结合图象确定单调区间即可.
    对应自变量值,再结合图象求不等式的解集.
     

    20.【答案】解:由题意得:

    ①当,即时,,所以无解;
    ②当,即时,
    ,解得舍去
    ③当,即时,,所以舍去
    综上:
    时,
    ,即时,
    综上,当x的取值集合为时,函数的最大值为

     

    【解析】本题考查三角函数的最值问题,属于中档题.
    ,则讨论,即可得解;
    ,利用二次函数性质进而可求得结果.
     

    21.【答案】解:时,
    由题意得                                             
    ,即,得,即
    所以函数的“弱不动点”为
    由已知上无解,        
    上无解,
    ,得上无解,
    上无解.
    ,则上单调递减,故
    所以,
    上恒成立,                                        
    上恒成立,即上恒成立,
    ,则上单调递减,故
    所以            
    综上,实数a的取值范围是 

    【解析】本题综合考查了函数恒成立问题、函数的基本性质等知识,理解所给的弱不动点这个概念是解题的关键,属于较难题.
    解方程可得;
    由方程上无解,转化为求函数的取值范围,利用换元法求解取值范围,同时注意对数的真数大于0对参数范围有限制,从而可得结论.
     

    22.【答案】解:的最小正周期为

    的最小正周期是

    ,解得

    时,,由的对称中心为

    时,,由的对称中心为

    综上所述,的对称中心为

    函数图象向右平移个单位,得到函数的图象,

    的一个零点,

    ,即

    解得

    可得

    ,最小正周期

    ,则

    ,解得

    若函数上恰好有10个零点,故

    要使最小,须mn恰好为的零点,故
    的最小值为

    ,对任意,存在,使得成立,则

    时,

    时,

    可得,解得

    故实数a的取值范围为

     

    【解析】本题考查由函数的图象与性质、函数的图象变换以及函数的零点和最值问题,属于难题.
    由题意可得函数的最小正周期,进而确定参数的值,再由整体代换即可求得对称中心;
    由三角函数的平移变换求得的解析式,再由零点的定义确定参数的值,结合图象可得的最小值;
    将所给条件转化为的值域的包含关系,即可求得参数a的取值范围.
     

    相关试卷

    2021-2022学年江苏省盐城市响水中学高一(下)期中数学试卷: 这是一份2021-2022学年江苏省盐城市响水中学高一(下)期中数学试卷,共16页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江苏省盐城市响水中学高一下学期期中数学试题含解析: 这是一份2022-2023学年江苏省盐城市响水中学高一下学期期中数学试题含解析,共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年江苏省盐城市响水中学高一下学期第三次学情分析考试数学试题(含答案解析): 这是一份2021-2022学年江苏省盐城市响水中学高一下学期第三次学情分析考试数学试题(含答案解析),共20页。试卷主要包含了 下列判断错误的是等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021-2022学年江苏省盐城市响水中学高一下学期期初检测数学试题(含答案解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map