![北师大数学九年级下册第三章 圆 检测题第1页](http://m.enxinlong.com/img-preview/2/3/13948210/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大数学九年级下册第三章 圆 检测题第2页](http://m.enxinlong.com/img-preview/2/3/13948210/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大数学九年级下册第三章 圆 检测题第3页](http://m.enxinlong.com/img-preview/2/3/13948210/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学北师大版1 圆课堂检测
展开
这是一份数学北师大版1 圆课堂检测,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第三章 单元检测卷满分:120分 时间:90分钟一、选择题(每题3分,共30分)1.下列命题为真命题的是( )A.两点确定一个圆 B.度数相等的弧相等C.垂直于弦的直径平分弦 D.相等的圆周角所对的弧相等,所对的弦也相等2.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是( )A.点P在⊙O外 B.点P在⊙O内 C.点P在⊙O上 D.无法确定[来源:学。科。网]3.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A.70° B.60° C.50° D.30° 4.如图,AB,AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于( )A.70° B.64° C.62° D.51°5.秋千拉绳长3 m,静止时踩板离地面0.5 m,某小朋友荡秋千时,秋千在最高处踩板离地面2 m(左右对称),如图,则该秋千所荡过的圆弧长为( )A.π m B.2π m C.π m D. m6.如图,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于点E,F,OE=8,OF=6,则圆的直径长为( )A.12 B.10 C.14 D.15(第6题)(第7题) 7.如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( )A.(2,-1) B.(2,2) C.(2,1) D.(3,1)8.如图,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于( )A.55° B.90° C.110° D.120°9.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是( )A.4 B.3+ C.3 D.3+ (第8题)(第9题) (第10题)10.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切……按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为( )A. B. C. D. 二、填空题(每题3分,共24分)11.如图,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________(只填一个即可).(第11题) (第12题) (第13题)12.如图,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A=________.13.如图,DB切⊙O于点A,∠AOM=66°,则∠DAM=________.14.如图,在⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有__________________. (第14题) (第15题) (第16题)15.如图,水平放置的圆柱形油槽的截面直径是52 cm,装入油后,油深CD为16 cm,那么油面宽度AB=________.16.如图,在扇形OAB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径是7,则GE+FH的最大值是________.(第17题) (第18题)18.如图,在⊙O中,C,D分别是OA,OB的中点,MC⊥AB,ND⊥AB,M,N在⊙O上.下列结论:①MC=ND;②==;③四边形MCDN是正方形;④MN=AB,其中正确的结论是________(填序号).三、解答题(19题6分,20~24题每题12分,共66分)19.如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.试判断直线AC与半圆O的位置关系,并说明理由.(第19题) 20.在直径为20 cm的圆中,有一条弦长为16 cm,求它所对的弓形的高. 21.如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4.(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.(第21题) 22.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80 m,桥拱到水面的最大高度为20 m.(1)求桥拱的半径.(2)现有一艘宽60 m,顶部截面为长方形且高出水面9 m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.(第22题) 23.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长;(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.(第23题) [来源:Z_xx_k.Com] 24.如图①,AB是⊙O的直径,且AB=10,C是⊙O上的动点,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.[来源:Zxxk.Com](1)求证:∠DAC=∠BAC;(2)若AD和⊙O相切于点A,求AD的长;(3)若把直线EF向上平行移动,如图②,EF交⊙O于G,C两点,题中的其他条件不变,试问这时与∠DAC相等的角是否存在,并说明理由.(第24题) 答案一、1.C 2.A 3.B 4.B 5.B 6.B7.C 8.C 9.B10.D 点拨:∵正六边形A1B1C1D1E1F1的边长为2=,∴正六边形A2B2C2D2E2F2的外接圆的半径为,则正六边形A2B2C2D2E2F2的边长为=,同理,正六边形A3B3C3D3E3F3的边长为=,…,正六边形AnBnCnDnEnFn的边长为,则当n=10时,正六边形A10B10C10D10E10F10的边长为===,故选D.二、11.∠BAE=∠C或∠CAF=∠B[来源:Z_xx_k.Com]12.99° 点拨:易知EB=EC.又∠E=46°,所以∠ECB=67°.从而∠BCD=180°-67°-32°=81°.在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.13.147° 点拨:因为DB是⊙O的切线,所以OA⊥DB.由∠AOM=66°,得∠OAM=(180°-66°)=57°.所以∠DAM=90°+57°=147°.14.∠6,∠2,∠5 点拨:本题中由弦AB=CD可知=,因为同弧或等弧所对的圆周角相等,所以∠1=∠6=∠2=∠5.[来源:学。科。网]15.48 cm16.+ 点拨:连接OE.∵点C是OA的中点,∴OC=OA=1.∵OE=OA=2,∴OC=OE.∵CE⊥OA,∴∠OEC=30°.∴∠COE=60°.在Rt△OCE中,CE==,∴S△OCE=OC·CE=.∵∠AOB=90°,∴∠BOE=∠AOB-∠COE=30°.∴S扇形BOE==.又S扇形COD==.因此S阴影=S扇形BOE+S△OCE-S扇形COD=+-=+.17.10.518.①②④ 点拨:连接OM,ON,易证Rt△OMC≌Rt△OND,可得MC=ND,故①正确.在Rt△MOC中,CO=MO.得∠CMO=30°,所以∠MOC=60°.易得∠MOC=∠NOD=∠MON=60°,所以==,故②正确.易得CD=AB=OA=OM,∵MC<OM,∴四边形MCDN是矩形,故③错误.易得MN=CD=AB,故④正确.三、19.解:AC与半圆O相切.理由如下:∵是∠BED与∠BAD所对的弧,∴∠BAD=∠BED.∵OC⊥AD,∴∠AOC+∠BAD=90°.∴∠BED+∠AOC=90°.即∠C+∠AOC=90°.∴∠OAC=90°.∴AB⊥AC,即AC与半圆O相切.20.解:∵这条小于直径的弦所对的弧有两条:劣弧与优弧,∴对应的弓形也有两个.如图,HG为⊙O的直径,且HG⊥AB,AB=16 cm,HG=20 cm,连接BO.∴OB=OH=OG=10 cm,BC=AB=8 cm.∴OC===6(cm).∴CH=OH-OC=10-6=4(cm),CG=OC+OG=6+10=16(cm).故所求弓形的高为4 cm或16 cm.(第20题) 21.(1)解:如图,连接CA.(第21题) ∵OP⊥AB,∴OB=OA=2.∵OP2+BO2=BP2,∴OP2=5-4=1,OP=1.∵BC是⊙P的直径,∴∠CAB=90°.∵CP=BP,OB=OA,∴AC=2OP=2.∴B(2,0),P(0,1),C(-2,2).(2)证明:∵直线y=2x+b过C点,∴b=6.∴y=2x+6.∵当y=0时,x=-3,∴D(-3,0).∴AD=1.∵OB=AC=2,AD=OP=1,∠CAD=∠POB=90°,∴△DAC≌△POB.∴∠DCA=∠ABC.∵∠ACB+∠CBA=90°,∴∠DCA+∠ACB=90°,即CD⊥BC.∴CD是⊙P的切线.22.解:(1)如图,点E是桥拱所在圆的圆心.(第22题) 过点E作EF⊥AB于点F,延长EF交于点C,连接AE,则CF=20 m.由垂径定理知,F是AB的中点,∴AF=FB=AB=40 m.设半径是r m,由勾股定理,得AE2=AF2+EF2=AF2+(CE-CF)2,即r2=402+(r-20)2.解得r=50.∴桥拱的半径为50 m.(2)这艘轮船能顺利通过.理由如下:当宽60 m的轮船刚好可通过拱桥时,如图,MN为轮船顶部的位置.连接EM,设EC与MN的交点为D,则DE⊥MN,∴DM=30 m,∴DE===40(m).∵EF=EC-CF=50-20=30(m),∴DF=DE-EF=40-30=10(m).∵10 m>9 m,∴这艘轮船能顺利通过.23.(1)证明:如图,连接CD,∵AD是⊙O的直径.∴∠ACD=90°.∴∠CAD+∠ADC=90°.又∵∠PAC=∠PBA,∠ADC=∠PBA,∴∠PAC=∠ADC.∴∠CAD+∠PAC=90°.∴PA⊥DA.而AD是⊙O的直径,∴PA是⊙O的切线.(2)解:由(1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA.∴∠GCA=∠PAC.又∵∠PAC=∠PBA,∴∠GCA=∠PBA.而∠CAG=∠BAC,∴△CAG∽△BAC.∴=,即AC2=AG·AB.∵AG·AB=12,∴AC2=12.∴AC=2.(3)解:设AF=x,∵AF∶FD=1∶2,∴FD=2x.∴AD=AF+FD=3x.在Rt△ACD中,∵CF⊥AD,∴AC2=AF·AD,即3x2=12,解得x=2或x=-2(舍去).∴AF=2,AD=6.∴⊙O的半径为3.在Rt△AFG中,AF=2,GF=1,根据勾股定理得AG===,由(2)知AG·AB=12,∴AB==.连接BD,如图.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,∵sin∠ADB=,AD=6,AB=,∴sin∠ADB=.∵∠ACE=∠ADB,∴sin∠ACE=. (第23题) 24.(1)证明:如图①,连接OC.∵直线EF和⊙O相切于点C,∴OC⊥EF.∵AD⊥EF,∴OC∥AD.∴∠DAC=∠OCA.∵OA=OC,∴∠BAC=∠OCA.∴∠DAC=∠BAC.(2)解:∵AD和⊙O相切于点A,∴OA⊥AD.∵AD⊥EF,OC⊥EF,∴∠OAD=∠ADC=∠OCD=90°.∴四边形OADC是矩形.∵OA=OC,∴矩形OADC是正方形.∴AD=OA.∵AB=2OA=10,∴AD=OA=5.(第24题) (3)解:存在,∠BAG=∠DAC.理由如下:如图②,连接BC.∵AB是⊙O的直径,∴∠BCA=90°.∴∠ACD+∠BCG=90°.∵∠ADC=90°,∴∠ACD+∠DAC=90°.∴∠DAC=∠BCG.∵∠BCG=∠BAG,∴∠BAG=∠DAC.
相关试卷
这是一份初中数学北师大版九年级下册第三章 圆1 圆单元测试习题,共9页。
这是一份北师大版九年级下册第三章 圆1 圆单元测试课后作业题,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版九年级下册第三章 圆综合与测试课后复习题,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/ed4b79351ae3a39596034d4bbb94b742.jpg)