初中数学湘教版八年级下册2.5.2矩形的判定精品达标测试
展开湘教版数学八年级下册课时练习2.5.2
《矩形的判定》
一 、选择题
1.对角线相等且互相平分的四边形是( )
A.一般四边形 B.平行四边形 C.矩形 D.菱形
2.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )
A.测量对角线是否相互平分
B.测量两组对边是否分别相等
C.测量一组对角是否为直角
D.测量四边形的其中三个角是否都为直角
3.如图,已知▱ABCD的四个内角的角平分线分别交于E,F,G,H.试说明四边形EFGH的形状是( ).
A.平行四边形 B.矩形 C.任意四边形 D.不能判断其形状
4.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )
A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND
5.下列三个命题中,是真命题的有( )
①对角线相等的四边形是矩形;
②三个角是直角的四边形是矩形;
③有一个角是直角的平行四边形是矩形.
A.3个 B.2个 C.1个 D.0个
6.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( )
A.AB=CD,AD=BC,AC=BD
B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD
D.∠A=∠B=90°,AC=BD
7.在▱ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的条件是( )
A.AB=AD B.OA=OB C.AC=BD D.DC⊥BC
8.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE
9.已知下列6个条件:
①AB∥DC;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD.
则不能使四边形ABCD成为矩形的是( )
A.①②③ B.②③④ C.②⑤⑥ D.④⑤⑥
10.已知,线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是( )
A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对)
二 、填空题
11.如图,已知MN∥PQ,EF与MN、PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,交于B、D,则四边形ABCD是________.
12.如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号) .
13.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE,BF.当∠ACB为____度时,四边形ABFE为矩形.
14.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件 ,使四边形DBCE是矩形.
15.下面是“利用直角三角形作矩形”尺规作图的过程.
已知:如图1,在Rt△ABC中,∠ABC=90°.
求作:矩形ABCD.
小明的作法如下:
做法:如图2,
(1)分别以点A、C为圆心,大于AC同样长为半径作弧,两弧交于点E、F;
(2)作直线EF,直线EF交AC于点O;
(3)作射线BO,在BO上截取OD,使得OD=OB;
(4)连接AD,CD.
∴四边形ABCD就是所求作的矩形.
老师说,“小明的作法正确.”
请回答,小明作图的依据是: .
16.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为 .
三 、解答题
17.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.
(1)求证:△ADE≌△CBF;
(2)求证:四边形BFDE为矩形.
18.如图所示,在▱ABCD中,E为AD的中点,△CBE是等边三角形.
求证:▱ABCD是矩形.
19.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.
20.如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.
(1)求证:四边形ABCD是平行四边形;
(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.
21.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从A点出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.
(1)从运动开始,经过多少时间点P、Q、C、D为边得四边形是平行四边形?
(2)从运动开始,经过多少时间点A、B、Q、P为边得四边形是矩形?
参考答案
1.C.
2.D.
3.B
4.A.
5.B.
6.C.
7.A
8.B.
9.C
10.A
11.答案为:矩形.
12.答案为:①④.
13.答案为:60.
14.答案为:EB=DC.
15.答案为:到线段两段点的距离相等的点在这条线段的垂直平分线上;
对角线互相平分的四边形为平行四边形;
有一个内角为90°的平行四边形为矩形.
16.答案为:2.4.
17.证明:(1)∵DE⊥AB,BF⊥CD,
∴∠AED=∠CFB=90°,
∵四边形ABCD为平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(AAS);
(2)∵四边形ABCD为平行四边形,
∴CD∥AB,
∴∠CDE+∠DEB=180°,
∵∠DEB=90°,
∴∠CDE=90°,
∴∠CDE=∠DEB=∠BFD=90°,
则四边形BFDE为矩形.
18.证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,AB=DC,
∴∠D+∠A=180°,
∵E是AD边的中点,
∴AE=DE,
∵△CBE是等边三角形,
∴BE=CE,
在△ABE和△DCE中,
AB=DC;AE=DE;BE=CE,
∴△ABE≌△DCE(SSS),
∴∠A=∠D,
∵∠D+∠A=90°,
∴∠D=∠A=90°,
∵四边形ABCD是平行四边形,
∴▱ABCD是矩形.
19.证明:∵AB=BC,BD平分∠ABC,
∴BD⊥AC,AD=CD.
∵四边形ABED是平行四边形,
∴BE∥AD,BE=AD,
∴BE=CD,
∴四边形BECD是平行四边形.
∵BD⊥AC,
∴∠BDC=90°,
∴▱BECD是矩形.
20.证明:(1)∵AB∥CD,
∴∠ABD=∠CDB,
又∵∠AEF=∠CFB,
∴∠AEB=∠CFD,
又∵BE=DF,
∴△ABE≌△CDF(ASA),
∴AB=CD,
又∵AB∥CD,
∴四边形ABCD是平行四边形;
(2)∵四边形ABCD是平行四边形,
∴OB=OD OA=OC=AC
∵BE=DF
∴OB﹣BE=DO﹣DF
∴OE=OF
又∵OA=OC
∴四边形AECF是平行四边形
又∵AC=2OE,EF=2OE
∴AC=EF
∴平行四边形AECF是矩形.
21.解:(1)当PD=CQ时,四边形PQCD为平行四边形,
即24﹣t=3t,解得,t=6,
即当t=6s时,四边形PQCD为平行四边形;
(2)根据题意得:AP=tcm,CQ=3tcm,
∵AB=8cm,AD=24cm,BC=26cm,
∴DP=AD﹣AP=24﹣t(cm),BQ=26﹣3t(cm),
∵AD∥BC,∠B=90°,
∴当AP=BQ时,四边形ABQP是矩形,
∴t=26﹣3t,解得:t=6.5,
即当t=6.5s时,四边形ABQP是矩形.
数学八年级下册2.5.2矩形的判定练习题: 这是一份数学八年级下册<a href="/sx/tb_c95354_t7/?tag_id=28" target="_blank">2.5.2矩形的判定练习题</a>,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中湘教版2.5.2矩形的判定综合训练题: 这是一份初中湘教版2.5.2矩形的判定综合训练题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学湘教版八年级下册2.5.2矩形的判定同步测试题: 这是一份初中数学湘教版八年级下册2.5.2矩形的判定同步测试题,共12页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。