终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    湘教版数学八年级下册2.5.2矩形的判定课时教学设计

    立即下载
    加入资料篮
    湘教版数学八年级下册2.5.2矩形的判定课时教学设计第1页
    湘教版数学八年级下册2.5.2矩形的判定课时教学设计第2页
    湘教版数学八年级下册2.5.2矩形的判定课时教学设计第3页
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湘教版八年级下册2.5.2矩形的判定教案

    展开

    这是一份湘教版八年级下册2.5.2矩形的判定教案,共9页。
    课题
    矩形的判定
    单元
    2
    学科
    数学
    年级

    学习
    目标
    情感态度和价值观目标
    在探究矩形的判别方法的活动中获得成功的体验,通过运用矩形的判定和性质,锻炼克服困难的意志、建立自信心
    能力目标
    1、经历利用矩形定义探究矩形其他判别方法的过程,培养学生的观察、思考、推理的意识,发展学生的形象思维和逻辑推理能力。
    2、根据矩形的判定进行简单的证明,培养学生的逻辑推理能力和演绎能力。
    知识目标
    经历矩形的判别方法的探究过程,掌握矩形的三种判定方法
    重点
    矩形的判定定理的探究
    难点
    矩形的判定定理的探究和应用
    学法
    自主探究,合作交流
    教法
    多媒体,问题引领
    教学过程
    教学环节
    教师活动
    学生活动
    设计意图
    导入新课
    回顾知识

    提出问题:
    木工朋友在制作窗框后,需要检测所制作的窗框是否是矩形,那么他需要测量哪些数据,其根据又是什么呢?
    你现在有办法帮他吗?
    学生:积极思考带着问题参与新课.
    通过实际情境,让学生感受数学来源于生活,数学知识与生活实践密切相关,增加学生的学习、探索兴趣,便于学生以高昂情绪参与本课的探索过程
    讲授新课
    从矩形的定义出发
    有一个角是直角的平行四边形是矩形。

    你还有其它的判定方法吗?
    动脑筋
    矩形的四个角是直角,那么四个角是直角的四边形是矩形吗?三个角是直角呢?两个角是直角呢?一个角是直角呢?
    猜想:有三个角是直角的四边形是矩形 。
    你能证明上述结论吗?
    已知:在四边形ABCD中,∠A=∠B=∠C=90°
    求证:四边形ABCD是矩形。
    证明:∵ ∠A=∠B=90°
    ∴ ∠A+∠B=180°
    ∴AD∥BC
    同理可证:AB∥CD
    ∴四边形ABCD是平行四边形
    又∵ ∠A=90°
    ∴四边形ABCD是矩形
    动脑筋
    从“矩形的两条对角线相等且互相平分”这一性质受到启发,你能画出一个对角线长度是4cm的矩形吗?这样的矩形有多少个?
    你能说出这样画出矩形的道理吗?
    猜想:对角线相等的平行四边形是矩形 。
    已知:平行四边形ABCD,AC=BD。
    求证:四边形ABCD是矩形。
    证明: ∵ AB=CD, BC=BC, AC=BD
    ∴ △ABC≌ △DCB(SSS)
    ∴ ∠ABC=∠DCB
    ∵ AB//CD
    ∴ ∠ABC+∠DCB=180°
    ∴ ∠ABC=∠DCB=90°
    又∵ 四边形ABCD是平行四边形
    ∴四边形ABCD是矩形。
    归纳:
    判定定理2.
    对角线相等的平行四边形是矩形 。
    (对角线相等且互相平分的四边形是矩形。)
    几何语言:
    ∵四边形ABCD是平行四边形
    AC=BD(或OA=OC=OB=OD)
    ∴四边形ABCD是矩形
    回到问题:
    现在你可以帮助木工朋友检测所制作的窗框是否是矩形了吧,你可以测量哪些数据,有几种方案,根据又是什么呢?
    方案一:
    分别测量出两组对边的长度和一个内角的度数,如果两组对边的长度分别相等,且这个内角是直角,则窗框符合规格
    方案二:
    测量出三个内角的度数,如果三个内角都是直角,则窗框符合规格
    方案三:
    分别测量出窗框四边和两条对角线的长度,如果窗框两组对边长度、两条对角线的长度分别相等,那么窗框符合规格
    归纳:
    方法1:
    有一个角是直角的平行四边形是矩形
    方法2:有三个角是直角的四边形是矩形
    方法3:对角线相等的平行四边形是矩形
    (对角线相等且互相平分的四边形是矩形。)
    议一议
    对角线相等的四边形是矩形吗?举例说明.
    等腰梯形
    例2 如图,在□ ABCD 中,它的两条对角线相交于点O。
    (1)如果□ ABCD是矩形,试问: △OBC是什么样的三角形?
    (2)如果△OBC是等腰三角形,其中:OB=OC,那么□ABCD是矩形吗?
    练习:
    如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠ EAC、 ∠ MCA、 ∠ ACN、 ∠ CAF的角平分线,则四边形ABCD是( )
    A 菱形 B 平行四边形
    C 矩形 D 不能确定
    从学生的已有的知识出发,利用教具,激发学生的强烈的好奇心和求知欲。学生经历了将实际问题转化为数学问题的建模过程。
    学生试着证明猜想并归纳出判定定理
    自主归纳并组织语言作答,交流与讨
    论,在教师
    的引导下探
    究矩形的判定定理2的证明方法。启发学生分析,引导学生归纳探究,层层理清命题证明的思路,简化证明方法。
    让学生回到前面的问题,试着解答
    在老师的引导下,学生给出三种方案。
    师生共同归纳出矩形的判定方法。
    通过讨论,并举例说明,加深对定理的理解
    教师引导学生审题,学生弄清题意后,师生共同分析思路,教师渗透综合分析法。
    学生口答,教师板书解题过程。
    学生自己解答,老师订正
    让学生动手动脑,自主发现矩形的判定。 并运用了类比和比较的方式,让学生加深对定义的理解
    让学生在特定的数学活动中经历矩形判定,通过证明、分析、推
    理、归纳总结出
    了矩形的判定定理
    师生共同完成推理过程。引导学生多角度多方位思考问题
    培养学生独立思考,总结归纳的能力。
    学生审题是解题的关键,通过运用矩形的判定定理学会解决简单的实际问题,培养了学生的应用意识。
    培养学生独立思考, 解决问题的能力
    巩固提升
    1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )
    A.测量对角线是否相互平分
    B.测量两组对边是否分别相等
    C.测量一组对角是否为直角
    D.测量四边形的其中三个角是否都为直角
    答案:D
    2.如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
    A.AB=BC B.AC⊥BD C.AC=BD D.∠1=∠2
    答案:C
    3.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE,BF.当∠ACB为__________度时,四边形ABFE为矩形.
    答案: 60
    4. 如图△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是 .

    答案: 2
    5、如图,四边形ABCD是平行四边形,AC,BD交于点O,∠1=∠2.求证:四边形ABCD是矩形.
    答案:
    证明:∵∠1=∠2,
    ∴BO=CO,即2BO=2CO.
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=OD.
    ∴AC=2CO,BD=2BO.
    ∴AC=BD.
    ∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形.
    学生自主解答,教师讲解答案。
    通过这几道题目来反馈学生对本节所学知识的掌握程度,落实基础。学生刚刚接触到新的知识需要一个过程,也就是对新知识从不熟悉到熟练的过程,无论是基础的习题,还是变式强化,都要以学生理解透彻为最终目标。
    课堂小结
    这节课你有哪些收获?你认为自己的表现如何?
    学生归纳本节所学知识
    回顾、总结、提高。学生自觉形成本节的课的知识网络
    板书
    判定一个四边形是矩形的方法是:
    1.从矩形的定义出发
    2.有三个角是直角的四边形是矩形
    3.对角线相等的平行四边形是矩形 。

    相关教案

    初中数学2.5.2矩形的判定教案设计:

    这是一份初中数学2.5.2矩形的判定教案设计,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。

    初中数学湘教版八年级下册2.6.2菱形的判定教案:

    这是一份初中数学湘教版八年级下册2.6.2菱形的判定教案,共8页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map