2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(4月5月)含解析
展开2022-2023学年北京市西城区中考数学专项提升仿真模拟卷
(4月)
一、选一选:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 计算的结果是( )
A. 0 B. 1 C. ﹣1 D.
2. 下列语句描述的中,是随机的为( )
A. 水能载舟,亦能覆舟 B. 只手遮天,偷天换日
C. 瓜熟蒂落,水到渠成 D. 心想事成,万事如意
3. 下列图形中,没有是轴对称图形的是( )
A. B. C. D.
4. 若单项式am﹣1b2与和仍是单项式,则nm的值是( )
A. 3 B. 6 C. 8 D. 9
5. 与最接近的整数是( )
A. 5 B. 6 C. 7 D. 8
6. 一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是( )
A. B.
C. D.
7. 化简的结果为( )
A. B. a﹣1 C. a D. 1
8. 甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜场数相同,则丁胜的场数是( )
A. 3 B. 2 C. 1 D. 0
9. 如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为( )
A 2π B. C. D.
10. “绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A B.
C. D.
11. 如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为( )
A. 4 B. 6 C. D. 8
12. 如图,P为等边三角形ABC内一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为( )
A. B. C. D.
二、填 空 题(每题4分,共5个小题,满分20分,将直接填写结果)
13. 如图,直线a∥b,若∠1=140°,则∠2=__________°.
14. 分解因式:2x3﹣6x2+4x=__________.
15. 在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.
16. 已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.
17. 将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.
三、解 答 题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)
18. 先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.
19. 已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.
20. “推进全科阅读,培育时代新人”.某学校为了地开展学生读书,随机了八年级50名学生最近一周的读书时间,统计数据如下表:
时间(小时)
6
7
8
9
10
人数
5
8
12
15
10
(1)写出这50名学生读书时间的众数、中位数、平均数;
(2)根据上述表格补全下面的条形统计图.
(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书,其中被抽到学生的读书时间没有少于9小时的概率是多少?
21. 如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,没有等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
22. 如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.
(1)求证:PA•BD=PB•AE;
(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若没有存在,说明理由.
23. (1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.
(2)类比思考:
如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件没有变,小明发现的上述结论还成立吗?请说明理由.
(3)深入研究:
如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件没有变,试判断△GMN的形状,并给与证明.
24. 如图,抛物线y=ax2+bx△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.
(1)求这条抛物线所对应的函数表达式;
(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;
(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和时,求∠BOC的大小及点C的坐标.
2022-2023学年北京市西城区中考数学专项提升仿真模拟卷
(4月)
一、选一选:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 计算的结果是( )
A. 0 B. 1 C. ﹣1 D.
【正确答案】A
【详解】分析:先计算值,再计算减法即可得.
详解:=﹣=0,
故选A.
点睛:本题主要考查值和有理数减法,解题的关键是掌握值的性质和有理数的减法法则.
2. 下列语句描述的中,是随机的为( )
A. 水能载舟,亦能覆舟 B. 只手遮天,偷天换日
C. 瓜熟蒂落,水到渠成 D. 心想事成,万事如意
【正确答案】D
【分析】直接利用随机以及必然、没有可能的定义分别分析得出答案.
【详解】解:A、水能载舟,亦能覆舟,是必然,故此选项错误;
B、只手遮天,偷天换日,是没有可能,故此选项错误;
C、瓜熟蒂落,水到渠成,是必然,故此选项错误;
D、心想事成,万事如意,是随机,故此选项正确.
故选D.
此题主要考查了随机以及必然、没有可能,正确把握相关定义是解题关键.
3. 下列图形中,没有是轴对称图形的是( )
A. B. C. D.
【正确答案】A
【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.
【详解】根据轴对称图形的概念,可知:选项A中的图形没有是轴对称图形.
故选A.
此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.
4. 若单项式am﹣1b2与的和仍是单项式,则nm的值是( )
A. 3 B. 6 C. 8 D. 9
【正确答案】C
【详解】分析:首先可判断单项式am-1b2与a2bn是同类项,再由同类项的定义可得m、n的值,代入求解即可.
详解:∵单项式am-1b2与a2bn的和仍是单项式,
∴单项式am-1b2与a2bn是同类项,
∴m-1=2,n=2,
∴m=3,n=2,
∴nm=8.
故选C.
点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.
5. 与最接近的整数是( )
A. 5 B. 6 C. 7 D. 8
【正确答案】B
【详解】分析:由题意可知36与37最接近,即与最接近,从而得出答案.
详解:∵36<37<49,
∴<<,即6<<7,
∵37与36最接近,
∴与最接近的是6.
故选B.
点睛:此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.
6. 一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是( )
A. B.
C. D.
【正确答案】A
【详解】分析:先利用正弦的定义得到sinA=0.15,然后利用计算器求锐角α.
详解:sinA=,
所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为
故选A.
点睛:本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.
7. 化简的结果为( )
A. B. a﹣1 C. a D. 1
【正确答案】B
【分析】根据同分母分式加减法的运算法则进行计算即可求出答案.
【详解】解:原式=
=
=a-1
故选:B.
本题考查了同分母分式加减法的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
8. 甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是( )
A. 3 B. 2 C. 1 D. 0
【正确答案】D
【详解】分析:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.
详解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,
所以只有两种可能性:甲胜1场或甲胜2场;
若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,
所以甲只能是胜两场,
即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.
答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.
故选D.
点睛:此题是推理论证题目,解答此题的关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.
9. 如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为( )
A. 2π B. C. D.
【正确答案】D
【分析】连接OC,根据∠BAC=50°,求出∠COA的度数,再根据弧长公式即可求出弧AC的长.
【详解】连接OC.
则∠BAC=∠OCA=50°,
∴∠AOC=80°,
∴
故选D
此题考查了扇形的弧长公式的应用,连接OC,由等边对等角及三角形内角和定理得到∠AOC=80°是解题的关键.
10. “绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A. B.
C. D.
【正确答案】C
【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率提前 30 天完成任务,即可得出关于x的分式方程.
【详解】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,
依题意得:,
即.
故选C.
考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
11. 如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为( )
A. 4 B. 6 C. D. 8
【正确答案】B
【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.
【详解】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,
∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,
∴∠ACB=2∠B,NM=NC,
∴∠B=30°,
∵AN=1,
∴MN=2,
∴AC=AN+NC=3,
∴BC=6,
故选B.
本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形的思想解答.
12. 如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为( )
A. B. C. D.
【正确答案】A
【详解】分析:将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.
详解:∵△ABC为等边三角形,
∴BA=BC,
可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,
∴BE=BP=4,AE=PC=5,∠PBE=60°,
∴△BPE为等边三角形,
∴PE=PB=4,∠BPE=60°,
在△AEP中,AE=5,AP=3,PE=4,
∴AE2=PE2+PA2,
∴△APE为直角三角形,且∠APE=90°,
∴∠APB=90°+60°=150°.
∴∠APF=30°,
∴在直角△APF中,AF=AP=,PF=AP=.
∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.
则△ABC的面积是•AB2=•(25+12)=9+.
故选A.
点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转的连线段的夹角等于旋转角,对应点到旋转的距离相等.
二、填 空 题(每题4分,共5个小题,满分20分,将直接填写结果)
13. 如图,直线a∥b,若∠1=140°,则∠2=__________°.
【正确答案】40
【分析】由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1的度数可得答案.
【详解】解:∵a∥b,
∴∠1+∠2=180°,
∵∠1=140°,
∴∠2=180°﹣∠1=40°,
故答案为40.
本题主要考查平行线的性质,解题的关键是掌握两直线平行同旁内角互补.
14. 分解因式:2x3﹣6x2+4x=__________.
【正确答案】2x(x﹣1)(x﹣2).
【详解】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.
详解:2x3﹣6x2+4x
=2x(x2﹣3x+2)
=2x(x﹣1)(x﹣2).
故答案为2x(x﹣1)(x﹣2).
点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.
15. 在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.
【正确答案】10
【详解】分析:要计算周长首先需要证明E、C、D共线,DE可求,问题得解.
详解:∵四边形ABCD是平行四边形
∴AD∥BC,CD=AB=2
由折叠,∠DAC=∠EAC
∵∠DAC=∠ACB
∴∠ACB=∠EAC
∴OA=OC
∵AE过BC的中点O
∴AO=BC
∴∠BAC=90°
∴∠ACE=90°
由折叠,∠ACD=90°
∴E、C、D共线,则DE=4
∴△ADE的周长为:3+3+2+2=10
故答案为10
点睛:本题考查了平行四边形的性质、轴对称图形性质和三点共线的证明.解题时注意没有能忽略E、C、D三点共线.
16. 已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.
【正确答案】2或8
【分析】分两种情况:当点C在点B左侧时,如图,先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,进一步即可求出m的值;当点C在点B右侧时,根据m=2AB求解即可.
【详解】解:①如图,当点C在点B左侧时,
∵B,C是线段AD的三等分点,
∴AC=BC=BD,
由题意得:AC=BD=m,
当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,
∴A(﹣3,0),B(1,0),
∴AB=3+1=4,
∴AC=BC=2,
∴m=2;
当点C在点B右侧时,AB=BC=CD=4,
∴m=AB+BC=4+4=8;
故2或8.
本题考查了抛物线与x轴的交点、抛物线的平移及解一元二次方程等知识,属于常考题型,利用数形的思想和三等分点的定义解决问题是关键.
17. 将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.
【正确答案】2018
【详解】分析:观察图表可知:第n行个数是n2,可得第45行个数是2025,推出第45行、第8列的数是2025﹣7=2018;
详解:观察图表可知:第n行个数是n2,
∴第45行个数是2025,
∴第45行、第8列的数是2025﹣7=2018,
故答案为2018.
点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.
三、解 答 题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)
18. 先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.
【正确答案】2ab﹣1,=1.
【详解】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,代入计算即可.
详解:原式=a2+2ab﹣(a2+2a+1)+2a
=a2+2ab﹣a2﹣2a﹣1+2a
=2ab﹣1,
当,时,
原式=2(+1)(-1)﹣1
=2﹣1
=1.
点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.
19. 已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.
【正确答案】证明见解析
【详解】分析:过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.
详解:如图,过点A作EF∥BC,
∵EF∥BC,
∴∠1=∠B,∠2=∠C,
∵∠1+∠2+∠BAC=180°,
∴∠BAC+∠B+∠C=180°,
即∠A+∠B+∠C=180°.
点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.
20. “推进全科阅读,培育时代新人”.某学校为了地开展学生读书,随机了八年级50名学生最近一周的读书时间,统计数据如下表:
时间(小时)
6
7
8
9
10
人数
5
8
12
15
10
(1)写出这50名学生读书时间众数、中位数、平均数;
(2)根据上述表格补全下面的条形统计图.
(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书,其中被抽到学生的读书时间没有少于9小时的概率是多少?
【正确答案】(1)众数是9;中位数是8.5;平均数是8.34;(2)补图见解析;(3)
【详解】分析:(1)先根据表格提示的数据得出50名学生读书的时间,然后除以50即可求出平均数;在这组样本数据中,9出现的次数至多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,从而求出中位数是8.5;
(2)根据题意直接补全图形即可.
(3)从表格中得知在50名学生中,读书时间没有少于9小时的有25人再除以50即可得出结论.
详解:(1)观察表格,可知这组样本数据的平均数为:
(6×5+7×8+8×12+9×15+10×10)÷50=8.34,
故这组样本数据的平均数为8.34;
∵这组样本数据中,9出现了15次,出现的次数至多,
∴这组数据的众数是9;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,
∴这组数据的中位数为(8+9)=8.5;
(2)补全图形如图所示,
(3)∵读书时间是9小时的有15人,读书时间是10小时的有10人,
∴读书时间没有少于9小时的有15+10=25人,
∴被抽到学生的读书时间没有少于9小时的概率是
点睛:本题考查了加权平均数、众数以及中位数,用样本估计总体的知识,解题的关键是牢记概念及公式.
21. 如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,没有等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
【正确答案】(1);(2)x>1;(3)P(﹣,0)或(,0)
【详解】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;
(2)依据A(1,3),可得当x>0时,没有等式x+b>的解集为x>1;
(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.
详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
∴A(1,3),
把A(1,3)代入双曲线y=,可得k=1×3=3,
∴y与x之间的函数关系式为:y=;
(2)∵A(1,3),
∴当x>0时,没有等式x+b>的解集为:x>1;
(3)y1=﹣x+4,令y=0,则x=4,
∴点B坐标为(4,0),
把A(1,3)代入y2=x+b,可得3=+b,
∴b=,
∴y2=x+,
令y2=0,则x=﹣3,即C(﹣3,0),
∴BC=7,
∵AP把△ABC的面积分成1:3两部分,
∴CP=BC=,或BP=BC=
∴OP=3﹣=,或OP=4﹣=,
∴P(﹣,0)或(,0).
点睛:本题考查了反比例函数与函数的交点问题:求反比例函数与函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
22. 如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.
(1)求证:PA•BD=PB•AE;
(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若没有存在,说明理由.
【正确答案】(1)证明见解析;(2)存在,
【详解】分析:(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形的性质即可求出答案.
(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC=,从而可求出AD和DG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE的面积.
详解:(1)∵PD平分∠APB,
∴∠APE=∠BPD,
∵AP与⊙O相切,
∴∠BAP=∠BAC+∠EAP=90°,
∵AB是⊙O的直径,
∴∠ACB=∠BAC+∠B=90°,
∴∠EAP=∠B,
∴△PAE∽△PBD,
∴,
∴PA•BD=PB•AE;
(2)如图,过点D作DF⊥PB于点F,作DG⊥AC于点G,
∵PD平分∠APB,AD⊥AP,DF⊥PB,
∴AD=DF,
∵∠EAP=∠B,
∴∠APC=∠BAC,
易证:DF∥AC,
∴∠BDF=∠BAC,
由于AE,BD(AE<BD)的长是x2﹣5x+6=0的两个实数根,
解得:AE=2,BD=3,
∴由(1)可知:,
∴cos∠APC=,
∴cos∠BDF=cos∠APC=,
∴,
∴DF=2,
∴DF=AE,
∴四边形ADFE是平行四边形,
∵AD=DF,
∴四边形ADFE是菱形,此时点F即为M点,
∵cos∠BAC=cos∠APC=,
∴sin∠BAC=,
∴,
∴DG=,
∴菱形ADME的面积为:DG•AE=2×=.
点睛:本题考查圆的综合问题,涉及圆周角定理,锐角三角函数的定义,平行四边形的判定及其面积公式,相似三角形的判定与性质,综合程度较高,考查学生的灵活运用知识的能力.
23. (1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.
(2)类比思考:
如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件没有变,小明发现的上述结论还成立吗?请说明理由.
(3)深入研究:
如图③,小明在(2)基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件没有变,试判断△GMN的形状,并给与证明.
【正确答案】(1)MG=NG; MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)等腰直角三角,证明见解析
【分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,用三角形中位线定理即可得出结论;
(2)同(1)的方法即可得出结论;
(3)同(1)的方法得出MG=NG,利用三角形中位线定理和等量代换即可得出结论.
【详解】解:(1)连接BE,CD相交于H,如图1,
∵△ABD和△ACE都是等腰直角三角形,
∴AB=AD,AC=AE,∠BAD=∠CAE=90°
∴∠CAD=∠BAE,
∴△ACD≌△AEB(SAS),
∴CD=BE,∠ADC=∠ABE,
∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,
∴∠BHD=90°,
∴CD⊥BE,
∵点M,G分别是BD,BC的中点,
∴MG∥CD且MG=CD,
同理:NG∥BE且NG=BE,
∴MG=NG,MG⊥NG;
(2)连接CD,BE,相交于H,如图2,
∵△ABD和△ACE都是等腰直角三角形,
∴AB=AD,AC=AE,∠BAD=∠CAE=90°,
∴∠CAD=∠BAE,
∴△ACD≌△AEB(SAS),
∴CD=BE,∠ADC=∠ABE,
∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,
∴∠BHD=90°,
∴CD⊥BE,
∵点M,G分别是BD,BC的中点,
∴MG∥CD且MG=CD,
同理:NG∥BE且NG=BE,
∴MG=NG,MG⊥NG;
(3)连接EB,DC并延长相交于点H,如图3,
同(1)的方法得,MG=NG,
同(1)的方法得,△ABE≌△ADC,
∴∠AEB=∠ACD,
∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,
∴∠DHE=90°,
同(1)的方法得,MG⊥NG.
∴△GMN等腰直角三角形.
此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.
24. 如图,抛物线y=ax2+bx△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.
(1)求这条抛物线所对应的函数表达式;
(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;
(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和时,求∠BOC的大小及点C的坐标.
【正确答案】(1);(2)t>4;(3)∠BOC=60°,C
【详解】分析:(1)将已知点坐标代入y=ax2+bx,求出a、b的值即可;
(2)利用抛物线增减性可解问题;
(3)观察图形,点A,点B到直线OC的距离之和小于等于AB;同时用点A(1,),点B(3,﹣)求出相关角度.
详解:(1)把点A(1,),点B(3,﹣)分别代入y=ax2+bx得
,解得
∴y=﹣
(2)由(1)抛物线开口向下,对称轴为直线x=,
当x>时,y随x的增大而减小,
∴当t>4时,n<m.
(3)如图,设抛物线交x轴于点F,分别过点A、B作AD⊥OC于点D,BE⊥OC于点E
∵AC≥AD,BC≥BE,
∴AD+BE≤AC+BE=AB,
∴当OC⊥AB时,点A,点B到直线OC的距离之和.
∵A(1,),点B(3,﹣),
∴∠AOF=60°,∠BOF=30°,
∴∠AOB=90°,
∴∠ABO=30°.
当OC⊥AB时,∠BOC=60°,点C坐标为.
点睛:本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.
2022-2023学年北京市西城区中考数学专项提升仿真模拟卷
(5月)
一、选一选
1. 2的倒数是( )
A. 2 B. C. D. -2
2. 下列运算正确的是( )
A. B. C. D.
3. 如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是( )
A. 24° B. 59° C. 60° D. 69°
4. 函数 中,自变量x的取值范围是( )
A. x≠0 B. x<1 C. x>1 D. x≠1
5. 若a<b,则下列结论没有一定成立是( )
A. a-1<b-1 B. 2a<2b C. D.
6. 若实数m、n满足 ,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是 ( )
A. 12 B. 10 C. 8或10 D. 6
7. 如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )
A. B. 2 C. D. 4
8. 在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )
A. 5 B. 4 C. 3 D. 2
二、填 空 题
9. 一组数据:2,5,3,1,6,则这组数据的中位数是________.
10. 地球上海洋总面积约为360 000 000km2,将360 000 000用科学记数法表示________.
11. 分解因式:_________.
12. 若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
13. 已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
14. 在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.
15. 为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
16. 小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,取完者获胜.若由小明先取,且小明获胜是必然,则小明次应该取走火柴棒根数是________.
17. 如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、 (k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.
18. 如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.
三、解 答 题
19. 解方程组:
20. 计算:
21. 某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下没有完整的两幅统计图表.
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是________;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
22. 如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.
23. 有2部没有同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择A部电影概率;
(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)
24. 某种型号汽车油箱容量为40L,每行驶100km耗油10L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L)
(1)求y与x之间函数表达式;
(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量没有低于油箱容量的四分之一,按此建议,求该辆汽车至多行驶的路程.
25. 如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450 ,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.
(1)求∠BPQ的度数;
(2)求树PQ的高度(结果到0.1m, )
26. 如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.
(1)求证:PC是半⊙O的切线;
(2)若∠CAB=30°,AB=10,求线段BF的长.
27. 如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0
(1)求点A、B、D的坐标;
(2)若△AOD与△BPC相似,求a的值;
(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若没有能,请说明理由.
2022-2023学年北京市西城区中考数学专项提升仿真模拟卷
(5月)
一、选一选
1. 2的倒数是( )
A. 2 B. C. D. -2
【正确答案】B
【详解】【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案.
【详解】∵2×=1,
∴2的倒数是,
故选B .
本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.
2. 下列运算正确的是( )
A. B. C. D.
【正确答案】C
【详解】【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.
【详解】A. ,故A选项错误;
B. a2与a1没有是同类项,没有能合并,故B选项错误;
C. ,故C选项正确;
D. ,故D选项错误,
故选C.
本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.
3. 如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是( )
A. 24° B. 59° C. 60° D. 69°
【正确答案】B
【详解】【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.
【详解】∵∠A=35°,∠C=24°,
∴∠DBC=∠A+∠C=35°+24°=59°,
又∵DE∥BC,
∴∠D=∠DBC=59°,
故选B.
本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.
4. 函数 中,自变量x的取值范围是( )
A. x≠0 B. x<1 C. x>1 D. x≠1
【正确答案】D
【详解】【分析】根据分式有意义的条件:分母没有为0,计算即可得出答案.
【详解】依题可得:x-1≠0,
∴x≠1,
故选D.
本题考查了函数自变量的取值范围,熟知分式有意义的条件是分母没有为0是解本题的关键.
5. 若a<b,则下列结论没有一定成立的是( )
A. a-1<b-1 B. 2a<2b C. D.
【正确答案】D
【分析】根据没有等式的性质逐项进行判断即可得答案.
【详解】解:A、∵a<b,
∴ a-1<b-1,正确,故A没有符合题意;
B、∵a<b,
∴ 2a<2b,正确,故B没有符合题意;
C、∵a<b,
∴ ,正确,故C没有符合题意;
D、当a<b<0时,
a2>b2,故D选项错误,符合题意,
故选D.
本题考查了没有等式的基本性质,熟练掌握没有等式的性质是解题的关键.
6. 若实数m、n满足 ,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是 ( )
A. 12 B. 10 C. 8或10 D. 6
【正确答案】B
【分析】根据值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.
【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,
又∵m、n恰好是等腰△ABC的两条边的边长,
①若腰为2,底为4,此时没有能构成三角形,舍去,
②若腰为4,底为2,则周长为:4+4+2=10,
故选B.
本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.
7. 如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )
A. B. 2 C. D. 4
【正确答案】A
【详解】【分析】根据菱形的性质得菱形边长为4,AC⊥BD,由一个角是60度的等腰三角形是等边三角形得△ABD是等边三角形;在Rt△AOD中,根据勾股定理得AO=2,AC=2AO=4,根据三角形面积公式得S△ACD=OD·AC=4,根据中位线定理得OE∥AD,根据相似三角形的面积比等于相似比继而可求出△OCE的面积.
【详解】∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,
∵∠BAD=60°,
∴△ABD是等边三角形,
又∵O是菱形对角线AC、BD的交点,
∴AC⊥BD,
在Rt△AOD中,
∴AO=,
∴AC=2AO=4,
∴S△ACD=OD·AC= ×2×4=4,
又∵O、E分别是中点,
∴OE∥AD,
∴△COE∽△CAD,
∴,
∴,
∴S△COE=S△CAD=×4=,
故选A.
本题考查了相似三角形的判定与性质,等边三角形的判定与性质,勾股定理,菱形的性质,图形熟练应用相关性质是解题的关键.
8. 在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )
A. 5 B. 4 C. 3 D. 2
【正确答案】C
【详解】【分析】设直线l解析式为:y=kx+b,由l与x轴交于点A(-,0),与y轴交于点B(0,b),依题可得关于k和b的二元方程组,代入消元即可得出k的值,从而得出直线条数.
【详解】设直线l解析式为:y=kx+b,则l与x轴交于点A(- ,0),与y轴交于点B(0,b),
∴,
∴(2-k)2=8|k|,
∴k2-12k+4=0或(k+2)2=0,
∴k=6±4或k=-2,
∴满足条件直线有3条,
故选C.
本题考查了函数图象与坐标轴交点问题,三角形的面积等,解本题的关键是确定出直线y=kx+b与x轴、y轴的交点坐标.
二、填 空 题
9. 一组数据:2,5,3,1,6,则这组数据的中位数是________.
【正确答案】3
【详解】【分析】根据中位数的定义进行求解即可得出答案.
【详解】将数据从小到大排列:1,2,3,5,6,
处于最中间的数是3,
∴中位数3,
故答案为3.
本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.
10. 地球上海洋总面积约为360 000 000km2,将360 000 000用科学记数法表示是________.
【正确答案】3.6×108
【详解】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值>1时,n是正数;当原数的值<1时,n是负数.
【详解】360 000 000将小数点向左移8位得到3.6,
所以360 000 000用科学记数法表示为:3.6×108,
故答案为3.6×108.
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
11. 分解因式:_________.
【正确答案】y(x+1)(x﹣1).
【详解】试题分析:x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1),故答案为y(x+1)(x﹣1).
考点:提公因式法与公式法的综合运用;因式分解.
12. 若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
【正确答案】8
【详解】解:设边数为n,由题意得,
180(n-2)=3603,
解得n=8.
所以这个多边形的边数是8.
故8.
13. 已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
【正确答案】15π
【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
【详解】解:设圆锥母线长为l,
∵r=3cm,h=4cm,
∴母线l=cm,
∴S侧=×2πr×5=×2π×3×5=15πcm2,
故答案为15π.
本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
14. 在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.
【正确答案】(5,1)
【详解】【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.
【详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,
∴所得的点的坐标为:(5,1),
故答案为(5,1).
本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.
15. 为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
【正确答案】120
【详解】【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.
【详解】设原计划每天种树x棵,则实际每天种树2x棵,
依题可得:,
解得:x=120,
经检验x=120是原分式方程的根,
故答案为120.
本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题关键.
16. 小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,取完者获胜.若由小明先取,且小明获胜是必然,则小明次应该取走火柴棒的根数是________.
【正确答案】1
【详解】【分析】要保证小明获胜是必然,则小明必然要取到第7根火柴,进行倒推,可以发现只要两人所取的根数之和为3就能保证小明获胜.
【详解】如果小明次取走1根,剩下了6根,后面无论如取,只要保证每轮两人所取的根数之和为3,就能保证小明将取走一根火柴,
而6是3的倍数,因此小明次应该取走1根,
故答案为1.
本题考查了随机,概率的意义,理解题目信息,判断出使两人所取的根数之和是3是解题的关键.
17. 如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、 (k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.
【正确答案】2
【详解】【分析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2 , y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2, y2=x1, 根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2.
【详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,
设A(x1,y1),B(x2 , y2),
∵A、B在反比例函数上,
∴x1y1=x2y2=2,
∵,
解得:x1=,
又∵,
解得:x2=,
∴x1x2=×=2,
∴y1=x2, y2=x1,
即OC=OD,AC=BD,
∵BD⊥x轴,AC⊥y轴,
∴∠ACO=∠BDO=90°,
∴△ACO≌△BDO(SAS),
∴AO=BO,∠AOC=∠BOD,
又∵∠AOB=45°,OH⊥AB,
∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,
∴△ACO≌△BDO≌△AHO≌△BHO,
∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2,
故答案为2.
本题考查了反比例函数系数k的几何意义,反比例函数与函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.
18. 如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.
【正确答案】+π
【详解】【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得AB=2,OB=,在旋转过程中,三角板的角度和边的长度没有变,所以点B运动的路径与坐标轴围成的图形面积:S=,计算即可得出答案.
【详解】在Rt△AOB中,∵A(1,0),∴OA=1,
又∵∠OAB=60°,
∴cos60°=,
∴AB=2,OB=,
∵在旋转过程中,三角板的角度和边的长度没有变,
∴点B运动的路径与坐标轴围成的图形面积:
S==π,
故答案为π.
本题考查了扇形面积的计算,锐角三角函数的定义,旋转的性质等,根据题意正确画出图形是解题的关键.
三、解 答 题
19. 解方程组:
【正确答案】原方程组的解为
【分析】利用代入法进行求解即可得.
【详解】 ,
由①得:x=-2y ③
将③代入②得:3(-2y)+4y=6,
解得:y=-3,
将y=-3代入③得:x=6,
∴原方程组的解为.
本题考查了解二元方程组,熟练掌握二元方程组的解法是解题的关键.
20. 计算:
【正确答案】5
【详解】【分析】按顺序先进行平方运算、0次幂运算、值的化简、角的三角函数值,然后再按运算顺序进行计算即可.
【详解】原式=4-1+(2-)+2×,
=4-1+2-+,
=5.
本题考查了实数的混合运算,熟练掌握实数的混合运算顺序、角的三角函数值是解题的关键.
21. 某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下没有完整的两幅统计图表.
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是________;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
【正确答案】(1)0.2;(2)补全征文比赛成绩频数分布直方图见解析;(3)全市获得一等奖征文的篇数为300篇.
【详解】【分析】(1)由频率之和为1,用1减去其余各组的频率即可求得c的值;
(2)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38,根据总数=频数÷频率得样本容量,再由频数=总数×频率求出a、b的值,根据a、b的值补全图形即可;
(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,再用总篇数×一等奖的频率=全市一等奖征文篇数.
【详解】(1)c=1-0.38-0.32-0.1=0.2,
故答案为0.2;
(2)38÷0.38=100,a=100×0.32=32,b=100×0.2=20,
补全征文比赛成绩频数分布直方图如图所示:
(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,
∴全市获得一等奖征文的篇数为:1000×0.3=300(篇),
答:全市获得一等奖征文的篇数为300篇.
本题考查了频数分布表、频数分布直方图,熟知频数、频率、总数之间的关系是解本题的关键.
22. 如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.
【正确答案】证明见解析.
【详解】【分析】根据平行四边形的性质得AD∥BC,AD=BC,∠A=∠C,根据平行线的性质得∠E=∠F,再已知条件可得AF=CE,根据ASA得△CEH≌△AFG,根据全等三角形对应边相等得证.
【详解】∵在四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠A=∠C,
∴∠E=∠F,
又∵BE=DF,
∴AD+DF=CB+BE,
即AF=CE,
在△CEH和△AFG中,
,
∴△CEH≌△AFG,
∴CH=AG.
本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.
23. 有2部没有同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择A部电影的概率;
(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)
【正确答案】(1)甲选择A部电影的概率为;(2)甲、乙、丙3人选择同一部电影的概率为.
【详解】【分析】(1)甲可选择电影A或B,根据概率公式即可得甲选择A部电影的概率.
(2)用树状图表示甲、乙、丙3人选择电影的所有情况,由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,根据概率公式即可得出答案.
【详解】(1)∵甲可选择电影A或B,∴甲选择A部电影的概率P=,
答:甲选择A部电影概率为;
(2)甲、乙、丙3人选择电影情况如图:
由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,
∴甲、乙、丙3人选择同一部电影的概率P=,
答:甲、乙、丙3人选择同一部电影的概率为.
本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
24. 某种型号汽车油箱容量为40L,每行驶100km耗油10L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L)
(1)求y与x之间的函数表达式;
(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量没有低于油箱容量的四分之一,按此建议,求该辆汽车至多行驶的路程.
【正确答案】 (1)y与x之间的函数表达式为:y=40-x(0≤x≤400);(2)该辆汽车至多行驶的路程为300.
【详解】【分析】(1)根据题意可得y与x之间的函数表达式为:y=40-x(0≤x≤400);
(2)根据题意可得没有等式:40-x≥40× ,解之即可得出答案.
【详解】(1)由题意得:y=40-x,即y=40-x(0≤x≤400),
答:y与x之间的函数表达式为:y=40-x(0≤x≤400);
(2)解:依题可得:40- x≥40×,∴-x≥-30,
∴x≤300.
答:该辆汽车至多行驶的路程为300km.
本题考查了函数的应用、一元没有等式的应用,弄清题意,找出各个量之间的关系是解题的关键.
25. 如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450 ,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.
(1)求∠BPQ的度数;
(2)求树PQ的高度(结果到0.1m, )
【正确答案】(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.
【分析】(1)根据题意题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,根据三角形内角和定理即可得∠BPQ度数;
(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC=x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.
【详解】(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,
在Rt△PBC中,
∵∠PBC=60°,∠PCB=90°,
∴∠BPQ=30°;
(2)设CQ=x,
在Rt△QBC中,
∵∠QBC=30°,∠QCB=90°,
∴BQ=2x,BC=x,
又∵∠PBC=60°,∠QBC=30°,
∴∠PBQ=30°,
由(1)知∠BPQ=30°,
∴PQ=BQ=2x,
∴PC=PQ+QC=3x,AC=AB+BC=10+x,
又∵∠A=45°,
∴AC=PC,
即3x=10+x,
解得:x=,
∴PQ=2x=≈15.8(m),
答:树PQ的高度约为15.8m.
本题考查了解直角三角形的应用,涉及到三角形的内角和定理、等腰三角形的性质、含30度角的直角三角形的性质等,准确识图是解题的关键.
26. 如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.
(1)求证:PC是半⊙O的切线;
(2)若∠CAB=30°,AB=10,求线段BF的长.
【正确答案】(1)见解析;(2)5.
【分析】(1)、连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)、依据切线的性质定理可知OC⊥PE,然后通过解直角三角函数,求得OF的值,再减去圆的半径即可.
【详解】解:(1)、连接OC,
∵OD⊥AC,OD圆心O,
∴AD=CD,
∴PA=PC,
在△OAP和△OCP中,,
∴△OAP≌△OCP(SSS),
∴∠OCP=∠OAP
∵PA是⊙O的切线,
∴∠OAP=90°.
∴∠OCP=90°,
即OC⊥PC
∴PC是⊙O的切线.
(2)、∵AB直径,
∴∠ACB=90°,
∵∠CAB=30°,
∴∠COF=60°,
∵PC是⊙O的切线,AB=10,
∴OC⊥PF,OC=OB=AB=5,
∴OF==10,
∴BF=OF﹣OB=5.
27. 如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0
(1)求点A、B、D的坐标;
(2)若△AOD与△BPC相似,求a的值;
(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若没有能,请说明理由.
【正确答案】(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆.
【详解】【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).
(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得, 解得:a= 3(舍去);
②△AOD∽△CPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;
(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.
【详解】(1)∵y=(x-a)(x-3)(0 ∴A(a,0),B(3,0),
当x=0时,y=3a,
∴D(0,3a);
(2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=,AO=a,OD=3a,
当x= 时,y=- ,
∴C(,-),
∴PB=3-=,PC=,
①当△AOD∽△BPC时,
∴,
即 ,
解得:a= 3(舍去);
②△AOD∽△CPB,
∴,
即 ,
解得:a1=3(舍),a2= .
综上所述:a的值为;
(3)能;连接BD,取BD中点M,
∵D、B、O三点共圆,且BD为直径,圆心为M(,a),
若点C也在此圆上,
∴MC=MB,
∴ ,
化简得:a4-14a2+45=0,
∴(a2-5)(a2-9)=0,
∴a2=5或a2=9,
∴a1=,a2=-,a3=3(舍),a4=-3(舍),
∵0 ∴a=,
∴当a=时,D、O、C、B四点共圆.
本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.
2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(二模三模)含答案: 这是一份2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(二模三模)含答案,共55页。
2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(3月4月)含答案: 这是一份2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(3月4月)含答案,共53页。
2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(3月4月)含解析: 这是一份2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(3月4月)含解析