终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题12.4 角平分线的性质与判定(专项训练)-2022-2023学年八年级数学上册《同步考点解读·专题训练》(人教版)

    立即下载
    加入资料篮
    专题12.4 角平分线的性质与判定(专项训练)-2022-2023学年八年级数学上册《同步考点解读·专题训练》(人教版)第1页
    专题12.4 角平分线的性质与判定(专项训练)-2022-2023学年八年级数学上册《同步考点解读·专题训练》(人教版)第2页
    专题12.4 角平分线的性质与判定(专项训练)-2022-2023学年八年级数学上册《同步考点解读·专题训练》(人教版)第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质课时训练

    展开

    这是一份人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质课时训练,共15页。
    专题12.4 角平分线的性质与判定(专项训练)-2022-2023学年八年级数学上册《同步考点解读·专题训练》(人教版)1.如图,OP平分MONPAON于点A,点Q是射线OM上一个动点,若PA3,则PQ的最小值为 ( )A B2 C3 D22.如图,ABCDBPCP分别平分ABCDCBAD过点P,且与AB垂直.若AD8,则点PBC的距离是(  )A8 B6 C4 D23.如图,直线abc表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有(  )A.一处 B.两处 C.三处 D.四处4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:射线OP就是∠BOA的角平分线.他这样做的依据是(  )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.如图,已知在ABC中,CDAB边上的高线,BE平分ABC,交CD于点EBC5DE2,则BCE的面积等于(    A10 B7 C5 D46.如图,RtABC中,C90°AD平分BAC,交BC于点DAB10SABD15,则CD的长为(       A3 B4 C5 D67.如图,的三边ABBCCA长分别是203040,其三条角平分线将分为三个三角形,则等于(    ). A1∶1∶1 B1∶2∶3 C2∶3∶4 D3∶4∶58.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交于点MN,再分别以点MN为圆心,大于的长为半径画弧,两弧交于点P,作射线交边于点D,若,则的面积是(    A15 B30 C45 D609.如图,点的中点,平分,下列结论∶①,四个结论中成立的是(  A①②④ B①②③ C②③④ D①③10.如图,已知在四边形中,平分,则四边形的面积是(  A24 B30 C36 D4211.如图,在△ABC中,CD平分∠ACBAB于点DDE⊥AC交于点EDF⊥BC于点F,且BC=4DE=2,则△BCD的面积是_____12.如图,已知ABC的周长是21OBOC分别平分ABCACBODBC于点D,且OD4ABC的面积是_____13.如图:已知OAOB两条公路,以及CD两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且POAOB两条公路的距离相等.14.如图,平分线上的一点,若,证明:15.如图所示,在△ABC中,∠C90°AD∠BAC的平分线,DE⊥ABAB于点E,点FAC上,BDDF求证:(1CFEB2ABAF2EB16.如图,ABC中,AD平分且平分BCEF(1)证明:(2)如果,求AEBE的长.
    参考答案:1C【详解】解:过点PPBOMB根据题意得:当PQOM时,PQ最小,即PB的长,OP平分MONPAONPA=3PB=PA=3PQ的最小值为3故选C【点睛】本题考查角平分线的性质;垂线段最短.2C【详解】过点PPE⊥BCEABCDPAABPDCDBPCP分别平分ABCDCBPA=PEPD=PEPE=PA=PDPA+PD=AD=8PA=PD=4PE=4故选:C3D【分析】根据角平分线上的点到角两边的距离相等进行求解即可.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点PABC两条外角平分线的交点,过点PPEABPDBCPFACPEPFPFPDPEPFPDPABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,可供选择的地址有4个.故选:D【点睛】本题主要考查了角平分线的性质,熟知角平分线的性质是解题的关键.4A【分析】过两把直尺的交点CCF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点CCF⊥BO与点F,由题意得CE⊥AO两把完全相同的长方形直尺,∴CE=CF∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.5C【详解】如图,过点EEFBCBC于点F,根据角平分线的性质可得DEEF2,所以BCE的面积等于故选:C6A【分析】过点DDEABE,根据角平分线上的点到角的两边距离相等可得DECD,然后利用ABD的面积列式计算即可得解.【详解】解:如图,过点DDEABE∵∠C90°AD平分BACDECDSABDABDE×10•DE15解得DE3CD3故选:A【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7C【分析】过点分别作的垂线,垂足分别为点,先根据角平分线的性质定理可得,再根据三角形的面积公式即可得.【详解】解:如图,过点分别作的垂线,垂足分别为点 由角平分线的性质定理得:的三边长分别是203040故选:C【点睛】本题考查了角平分线的性质定理,熟练掌握角平分线的性质定理是解题关键.8B【分析】如图,过点DDEABE,根据角平分线的性质可得DECD4,根据三角形面积公式即可得答案.【详解】解:如图,过点DDEABE由作图可知,AP平分CABBCACBCACDEABDECD4SABDABDE×15×430故选:B【点睛】本题考查尺规作角平分线,角平分线的性质,三角形的面积等知识,解题的关键是学会添加常用辅助线,利用角平分线的性质定理解决问题.9A【分析】过EEFADF,易证得RtAEFRtAEB,得到BEEFABAFAEFAEB;而点EBC的中点,得到ECEFBE,则可证得RtEFDRtECD,得到DCDFFDECDE,也可得到ADAFFDABDCAEDAEFFEDBEC90°,即可判断出正确的结论.【详解】解:过EEFADF,如图,ABBCAE平分BADBE=EFAE=AERtAEFRtAEB(HL)ABAFAEFAEB而点EBC的中点,ECEFBE,所以错误;ECEFED=EDRtEFDRtECDDCDFFDECDE,所以正确;ADAFFDABDC,所以正确;∴∠AEDAEFFEDBEC90°,所以正确,综上:①②④正确,故选:A【点睛】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等,也考查了三角形全等的判定与性质.10B【分析】过DDE⊥ABBA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论.【详解】如图,过DDE⊥ABBA的延长线于E∵BD平分∠ABC∠BCD=90°∴DE=CD=4四边形的面积 故选B.【点睛】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.114【详解】∵CD平分∠ACBAB于点D∴∠DCE=∠DCF∵DE⊥ACDF⊥BC∴DF=DE=2∴SBCD=BC×DF÷2=4×2÷2=4故答案为:4考点:角平分线的性质.1242【分析】根据角平分线上的点到角的两边的距离相等可得点OABACBC的距离都相等(即OEODOF),从而可得到的面积等于周长的一半乘以2,代入求出即可.【详解】如下图,连接OA,过OOEABEOFACFOBOC分别平分ABCACBOEOFOD4的周长是21ODBCD,且OD442故答案为:42【点睛】本题主要考查了角平分线的性质及三角形面积的求法,熟练掌握角平分线的性质是解决本题的关键.13.见解析.【分析】到OAOB距离相等的点在∠AOB的平分线上,到CD距离相等的点在线段CD的垂直平分线上,所以P点是∠AOB的平分线与线段CD的垂直平分线的交点.【详解】解:如图所示,∠AOB的平分线与线段CD的垂直平分线的交点P就是所求的点:【点睛】本题考查了作图应用与设计作图,角平分线的判定以及线段垂直平分线的判定,到两条相交直线距离相等的点在这两条相交直线夹角的平分线上;到两点距离相等的点,在这两点连线的垂直平分线上.14.见详解.【分析】过点D于点G于点H,利用结合补角的定义可证,由AAS可证,由全等的性质可得结论.【详解】解:过点D于点G于点H,则 平分线上的一点  【点睛】本题考查了角平分线的性质及全等三角形的判定与性质,灵活利用角平分线上的点到角两边的距离相等这一性质是解题的关键.15.(1)见解析;(2)见解析.【分析】(1)由AD为角平分线,利用角平分线定理得到DE=DC,再由BD=DF,利用HL得到三角形FCD与三角形BDF全等,利用全等三角形对应边相等即可得证;2)利用AAS得到三角形ACD与三角形AED全等,利用全等三角形对应边相等得到AC=AE,由AB=AE+EB,等量代换即可得证.【详解】证明:(1∵AD∠BAC的平分线,DE⊥ABDC⊥AC∴DE=DCRtCFDRtEBD中,∴RtCFD≌RtEBDHL),∴CF=EB2)在ACDAED中,∴△ACD≌△AEDAAS),∴AC=AE∴AB=AE+EB=AC+EB=AF+FC+EB=AF+2EB【点睛】此题考查了全等三角形的判定与性质,以及角平分线性质,熟练掌握全等三角形的判定与性质是解本题的关键.16(1)见解析(2)AE=4BE=1 【分析】(1)连接BDCD,先由垂直平分线性质得BD=CD,再由角平分线性质得DE=CF,然后证RtBEDRtCFDHL),即可得出结论;2)证明RtAEDRtAFDHL),得AE=AF,则CF=AF-AC=AE-AC,又因为BE=AB-AE,由(1)知BE=CF,则AB-AE= AE-AC,代入ABAC值即可求得AE长,继而求得BE长.【详解】(1)证明:如图,连接BDCD且平分BCBD=CDAD平分EFDE=CFDEB=∠DFC=90°RtBEDRtCFD中,RtBEDRtCFDHL),BE=CF2)解:AD平分EFDE=CFDEB=∠DFC=90°RtAEDRtAFD中,RtAEDRtAFDHL),AE=AFCF=AF-AC=AE-AC由(1)知:BE=CFAB-AE=AE-AC5-AE=AE-3AE=4BE=AB-AE=5-4=1【点睛】本题考查角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,熟练掌握角平分线的性质定义和线段垂直平分线的性质定理是解题的关键. 

    相关试卷

    浙教版七年级下册1.3平行线的判定优秀随堂练习题:

    这是一份浙教版七年级下册1.3平行线的判定优秀随堂练习题,文件包含专题13平行线的判定专项训练-七年级数学下册《同步考点解读•专题训练》浙教版解析版docx、专题13平行线的判定专项训练-七年级数学下册《同步考点解读•专题训练》浙教版原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质一课一练:

    这是一份人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质一课一练,共21页。

    初中12.2 三角形全等的判定一课一练:

    这是一份初中12.2 三角形全等的判定一课一练,共18页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map