专题一:安培力作用下的运动和平衡问题 课后练
展开专题一:安培力作用下的运动和平衡问题 课后练
1. 关于通电直导线在磁场中所受的安培力,下列说法正确的是( )
A. 通电直导线处于匀强磁场中一定受到安培力的作用
B. 安培力的大小与通电直导线和匀强磁场方向的夹角无关
C. 匀强磁场中,将直导线从中点折成直角,安培力的大小可能变为原来的倍
D. 两根通以同向电流的平行直导线之间,存在着相互吸引的安培力
2. 某地的地磁场的磁感应强度大约是T,一根长为的导线,通入的电流,则该导线可能受到的磁场力可能为( )
A. B. C. D.
3. 如图所示,条形磁铁放在水平粗糙桌面上,它的右上方附近固定有一根长直导线,导线中通与了方向垂直纸面向里(即与条形磁铁垂直)的电流,与原来没有放置通电导线时相比较,磁铁受到的支持力N和摩擦力f的变化情况是( )
A. N减小了 B. N增大了
C. f始终为0 D. f不为0,且方向向右
4. 如图,由均匀的电阻丝组成的等边三角形导体框,垂直磁场放置,将AB两点接入电压恒定的电源两端,通电时,线框受到的安培力为F,若将ACB边移走,则余下线框受到的安培力大小为( )
A. B. C. D.
5. 一种可测量磁感应强度大小的实验装置,如图所示.磁铁放在水平放置的电子测力计上,两极之间的磁场可视为水平匀强磁场.其余区域磁场的影响可忽略不计.此时电子测力计的示数为G1.将一直铜条AB水平且垂直于磁场方向静置于磁场中.两端通过导线与电源、开关、滑动变阻器和电流表连成回路.闭合开关,调节滑动变阻器的滑片.当电流表示数为I时.电子测力计的示数为G2.测得铜条在匀强磁场中的长度为L.铜条始终未与磁铁接触,对上述实验下列说法正确的是( )
A. 铜条所受安培力方向竖直向下 B. 铜条所在处磁场的磁感应强度大小为
C. 铜条所在处磁场的磁感应强度大小为 D. 铜条所在处磁场的磁感应强度大小为
6. 如图所示,两个相同的轻质铝环能在一个光滑的绝缘圆柱体上自由移动,设有大小不相等的电流按如图所示的方向进入两铝环,则两铝环的运动情况是( )
A. 彼此靠近,加速度变大且两者的加速度大小时刻相等
B. 彼此靠近,两者的加速度大小和速度大小不会时刻相等
C. 彼此远离,加速度变小且两者的加速度大小时刻相等
D. 彼此远离,两者的加速度大小和速度大小不会时刻相等
7. 如图所示,原来静止的圆线圈可以自由移动,在圆线圈直径MN上靠近N点处放置一根垂直于线圈平面的固定不动的通电直导线,导线中电流从外向里流动.当在圆线圈中通以逆时针方向的电流I时,圆线圈将会( )
A. 受力向左平动 B. 受力向右平动
C. 不受力,平衡不动 D. 以MN为轴转动
8. 如图所示,通电直导线ab位于两平行导线横截面MN的连线的中垂线上,当平行导线通以同向等值电流时,以下说法中正确的是( )
A. ab顺时针旋转 B. ab逆时针旋转
C. a端向外,b端向里旋转 D. a端向里,b端向外旋转
9. 如图,用三条细线悬挂的水平圆形线圈共有N匝,线圈由粗细均匀、单位长度质量为2克的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度B的方向与水平线成60°角,线圈中通过的电流为0.1 A,要使三条细线上的张力为零,重力加速度g取10 m/s2.则磁感应强度B的大小应为( )
A. 4 T B. 0.4 T C. D.
10. 将一倾斜的平行金属导轨固定在地面上,导轨的顶端接一电源和一滑动变阻器,在垂直导轨平面向下的方向上加一匀强磁场,在倾斜导轨上放一导体棒,导体棒与导轨接触良好且处于静止状态.现调节滑动变阻器使其接入电路的阻值减小,而整个过程中导体棒始终静止在导轨上,则( )
A. 导体棒所受摩擦力可能一直增大 B. 导体棒所受摩擦力可能先减小后增大
C. 导体棒所受摩擦力可能先增大后减小 D. 导体棒所受摩擦力可能始终为零
11. 如图所示,两平行金属导轨CD、EF间距为L,与电动势为E,内阻为r的电源相连,质量为m、电阻为R的金属棒ab垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计。为使ab棒静止,需在空间施加的匀强磁场磁感强度的最小值及其方向分别为( )
A. ,水平向右 B. ,垂直于回路平面向下
C. ,竖直向下 D. ,垂直于回路平面向上
12. 如图所示,质量为m、长为L的导体棒电阻为R,初始时静止于光滑的水平轨道上,电源电动势为E,内阻不计。匀强磁场的磁感应强度为B,其方向与轨道平面成θ角斜向上方,开关闭合后导体棒开始运动,则( )
A. 导体棒向左运动 B. 开关闭合瞬间导体棒MN所受安培力为
C. 开关闭合瞬间导体棒MN所受安培力为 D. 开关闭合瞬间导体棒MN的加速度为
13. 如图所示,用两根轻细悬线将质量为m、长为l的金属棒ab悬挂在c、d两处,置于匀强磁场内。当棒中通以从a到b的电流I后,两悬线偏离竖直方向θ角而处于平衡状态。为了使棒平衡在该位置上,所需的磁场的最小磁感应强度的大小、方向为( )
A. tanθ,竖直向上 B. tanθ,竖直向下
C. sinθ,平行悬线向下 D. sinθ,平行悬线向上
14. 如图,在倾角为α(α<45°)的光滑斜面上,与底边平行放置一根长为L、质量为m、通电电流为I的直导体棒.欲使此导体棒静止在斜面上,可加一平行于纸面的匀强磁场,在磁场方向由竖直向上沿逆时针方向转至水平向左的过程中,关于磁感应强度B的说法正确的是(重力加速度为g)( )
A. 此过程中磁感应强度B逐渐增大 B. 此过程中磁感应强度B逐渐减小
C. 此过程中磁感应强度B的最小值为 D. 此过程中磁感应强度B的最大值为
15. 如图所示,O为圆心,和是半径分别为ON、OM的同心圆弧,在O处垂直纸面有一载流直导线,电流方向垂直纸面向外,用一根导线围成如图KLMN所示的回路,当回路中沿图示方向通过电流时(电源未在图中画出),此时回路( )
A. 将向左平动 B. 将向右平动
C. 将在纸面内绕通过O点并垂直纸面的轴转动 D. KL边将垂直纸面向外运动,MN边垂直纸面向里运动
16. 如图所示,三根长为L的直线电流在空间构成等边三角形,电流的方向垂直纸面向里,电流大小均为I,其中A、B电流在C处产生的磁感应强度的大小分别为B0,导线C位于水平面上且处于静止状态,则导线C受到的静摩擦力的大小和方向是( )
A. ,水平向左 B. ,水平向右
C. ,水平向左 D. ,水平向右
17. 如图所示,在竖直向下的匀强磁场中,有两根竖直放置的平行导轨AB、CD,导轨外面紧贴导轨放有质量为m的金属棒MN,棒与导轨间的动摩擦因数为μ,重力加速度为g。现从t=0时刻起,给棒通以图示方向的电流,且电流大小与时间成正比,即I=kt,其中k为正恒量。若金属棒与导轨始终垂直,则下列表示棒所受的摩擦力Ff随时间t变化的四幅图中,正确的是( )
A. B.
C. D.
18. 如图所示,在倾角θ=30°的斜面上固定一平行金属导轨,导轨间距离L=0.25 m,两导轨间接有滑动变阻器R和电动势E=12 V、内阻不计的电池。垂直导轨放有一根质量m=0.2 kg的金属棒ab,它与导轨间的动摩擦因数μ=。整个装置放在垂直斜面向上的匀强磁场中,磁感应强度B=0.8 T。当调节滑动变阻器R的阻值在什么范围内时,可使金属棒静止在导轨上?导轨与金属棒的电阻不计,g取10 m/s2。
19. 电磁炮是利用磁场对电流的作用力把电能转化为机械能,使炮弹发射出去.如图所示,把两根长为s(s足够大)、互相平行的铜制轨道放在磁场中,轨道之间放有质量为m的炮弹,炮弹架在长为L、质量为M的金属架上,已知金属架与炮弹的运动过程中所受的总阻力与速度平方成正比,当有恒定的大电流I1通过轨道和金属架时,炮弹与金属架在磁场力的作用下,获得速度v1时的加速度为a,当有恒定的大电流I2通过轨道和金属架时,炮弹的最大速度为v2,则垂直于轨道平面的磁感应强度为多少?
参考答案
1. CD
【解析】
AB.安培力,其中为电流方向与磁场方向的夹角,安培力的大小与通电直导线和匀强磁场方向的夹角有关.当时,就算有电流和磁场也不会有安培力,AB错误;
C.当导线和磁场垂直时,导线受到的安培力大小为,将导线从中点折成直角,到导线的有效长度变为,故安培力变为原来的倍,C正确;
D.根据电流与电流之间的相互作用可知,两根通以同方向电流的平行直导线之间,存在着相互吸引的安培力,D正确.
2. AB
【解析】
当导线与磁场垂直时,则有
即为导线在磁场中受到的磁场力的最大值,当导线与磁场方向平行时,,可知安培力的大小范围。
故选AB。
3. AD
【解析】
以导线为研究对象,由左手定则判断得知导线所受安培力方向斜向右下方;根据牛顿第三定律得知,导线给磁铁一个方向斜向左上方的力,则磁铁有向左运动的趋势,受到向右的摩擦力,同时磁铁对地面的压力减小,由牛顿第三定律可得,磁铁受到的支持力N减小。
故选AD。
4. D
【解析】
由左手定则可知各边所受的安培力如图所示.
设电源电压为U,每节电阻丝的阻值为r,当把AB两端接入电压时,经过AC和CB的电流为:
则安培力:
经过AB的电流为:
则安培力:
由力的合成与分解可得:
将ACB边移走之后:
因此:
故选D.
5. C
【解析】
由左手定则可知,铜条所受安培力方向竖直向上,选项A错误;由牛顿第三定律可知,导体棒对磁铁有向下的作用力,使得电子测力计的示数增加,由平衡知识可知:G2-G1=BIL,解得,选项C正确,BD错误;故选C.
6. A
【解析】
根据电流间相互作用规律“通向电流相互吸引,异向电流相互排斥”可知,两圆环应相互吸引,即彼此相向运动,再根据牛顿第二定律和牛顿第三定律可知,两圆环的加速度大小相等,两者的速度大小也会时刻相等,所以A正确,BCD错误.
7. D
【解析】
长直导线通电后在它周围形成以导线上的点为圆心的圆形磁场区域,如图中虚线所示.
圆形线圈就是在该磁场中的通过导体,要受到安培力作用,其方向可由左手定则判断出;圆线圈下半部分所在处磁场方向斜向上,所以受的安培力方向垂直纸面向外;上半部分线圈受的安培力垂直纸面向里.因此线圈以MN为轴转动,故D正确,ABC错误;
故选D.
8. C
【解析】
导线M和N的磁感线都是同心圆。因此对ab上半段,M导线的磁感线指向右下,可以用左手定则判断:a端受到向外的力。N导线的磁感线指向右上,也使a端受向外的力;同理也可以分析出b端受向里的力。从而使得a端转向纸外,b端转向纸里;
故选C。
9. B
【解析】
设圆环的半径为r,则圆环的质量为:
m环=2πr×2×10-3kg
磁场的水平分量为Bsin30°,环受到的安培力为:
F=Bsin30°×I×2πr
由于环所受向上的安培力等于环的重力,则有:
2πr×2×10-3×10=Bsin30°×I×2πr
解得:
B=0.4T
A.4 T,与结论不相符,选项A错误;
B.0.4 T,与结论相符,选项B正确;
C. ,与结论不相符,选项C错误;
D.,与结论不相符,选项D错误;
故选B。
10. AB
【解析】
A.由左手定则可判断安培力沿斜面向上,电路的阻值减小,则回路中电流增大,安培力增大,如果开始时摩擦力沿导轨向下,则导体棒所受摩擦力一直增大,故A正确;
B.如果原来摩擦力沿导轨向上,随着安培力的增大,则导体棒所受摩擦力先减小到零,后反向增大.故B说法正确.
C.由前面分析可知导体棒所受摩擦力不可能先增大后减小 ,故C错误;
D.假设导体棒所受摩擦力始终为零,随着安培力的增大,导体棒不可能一直静止,故D说法错误.
11. B
【解析】
对导体棒受力分析,受重力、支持力和安培力,如图所示:
从图象可以看出,当安培力沿斜面向上时,安培力最小,磁感应强度最小,
安培力的最小值为:
FA=mgsinθ,
故磁感应强度的最小值为:
根据欧姆定律,有:
E=I(R+r)
故有:
,
根据左手定则,磁场方向垂直平面向下。
故选:B
12B
【解析】
A.开关闭合,由左手定则可知,磁感线穿过掌心,则大拇指向为垂直磁感线向右,从而导致导体棒向右运动。故A错误;
BC.当开关闭合后,根据安培力公式F=BIL,与I=可得F= ,故B正确,C错误;
D.当开关闭合后,安培力的方向与导轨成90∘−θ的夹角,再根据力的分解可得,合力大小,再由牛顿第二定律与安培力的大小可知,加速度
故D错误;
故选:B。
13. D
【解析】
要求所加磁场的磁感应强度最小,应使棒平衡时所受的安培力有最小值。由于棒的重力恒定,悬线拉力的方向不变,由画出的力的三角形可知
安培力的最小值为
Fmin=mgsinθ
即
IlBmin=mgsinθ
得
Bmin=sinθ
方向应平行于悬线向上
故选D。
14. C
【解析】
对导体棒受力分析,受重力mg、支持力FN和安培力FA,三力平衡,合力为零,将支持力FN和安培力FA合成,合力与重力相平衡,如图所示:
从图中可以看出,安培力FA先变小后变大,由于FA=BIL,且电流I和导体棒的长度L均不变,故磁感应强度先减小后增大;由图可以看出当FA平行于斜面时有最小值
BminIL=mgsinα
解得
Bmin=
此过程中安培力竖直向上时最大,大小为mg,则B的最大值为
故选C。
15. D
【解析】
因为通电直导线的磁感线是以O为圆心的一组同心圆,磁感线与电流一直平行,所以KN边、LM边均不受力.根据左手定则可得,KL边受力垂直纸面向外,MN边受力垂直纸面向里,故D正确.
16. B
【解析】
A、B电流在C处产生的磁感应强度的大小分别为B0,根据力的平行四边形定则,结合几何的菱形关系,则有:
再由左手定则可知,安培力方向水平向左,大小为
由于导线C位于水平面处于静止状态,所以导线C受到的静摩擦力大小为,方向水平向右;
故选B。
17. C
【解析】
当
Ff=μBIL=μBLkt<mg
时,棒沿导轨向下加速;
Ff=μBLkt>mg
时,棒沿导轨向下减速;在棒停止运动前,棒所受摩擦力为滑动摩擦力,大小为
Ff=μBLkt
当棒停止运动时,摩擦力立即变为静摩擦力,大小为
Ff=mg
故选C。
18. 【答案】1.6 Ω≤R≤4.8 Ω
【解析】
当滑动变阻器R接入电路的阻值较大时,I较小,安培力F较小,金属棒在重力沿斜面的分力mgsin θ作用下有沿斜面下滑的趋势,导轨对金属棒的摩擦力沿斜面向上,如图所示。金属棒刚好不下滑时有
ILB+μmgcos θ-mgsin θ=0①
I= ②
联立①②解得
R==4.8 Ω
当滑
变阻器R接入电路的阻值较小时,I较大,安培力F较大,会使金属棒产生沿斜面上滑的趋势,此时导轨对金属棒的摩擦力沿斜面向下,如图所示。金属棒刚好不上滑时有
BI′L-μmgcos θ-mgsin θ=0③
I′= ④
联立③④解得
R′==1.6 Ω
所以,滑动变阻器R接入电路的阻值范围应为1.6 Ω≤R≤4.8 Ω。
19. 【答案】
【解析】
速度为v1和v2时金属架与炮弹受到的阻力分别为
Ff1=kv12
Ff2=kv22
电流I1通过轨道和金属架时,应用牛顿第二定律有
BI1L-Ff1=(M+m)a
炮弹速度为v2时,有
BI2L-Ff2=0
联立解得
B=
第47讲 库仑力作用下的平衡问题和变速运动问题(原卷版): 这是一份第47讲 库仑力作用下的平衡问题和变速运动问题(原卷版),共10页。
第47讲 库仑力作用下的平衡问题和变速运动问题(解析版): 这是一份第47讲 库仑力作用下的平衡问题和变速运动问题(解析版),共19页。
高考物理一轮复习【专题练习】 专题57 磁场的叠加、安培力大小和安培力作用下的平衡动力学问题: 这是一份高考物理一轮复习【专题练习】 专题57 磁场的叠加、安培力大小和安培力作用下的平衡动力学问题,文件包含专题57磁场的叠加安培力大小和安培力作用下的平衡动力学问题教师版docx、专题57磁场的叠加安培力大小和安培力作用下的平衡动力学问题学生版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。